如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接BD,若BC=
5
-1
,則AC=______.
∵AB=AC,∠C=72°
∴∠A=36°
圓O過AB兩點且BC切于B
∴∠CBD=∠A=36°
∴∠ABD=36°
∴AD=BD
∠BDC=72°
BC=BD
∴△ABC△BCD
∴BC 2=CD•AC=(AC-BC)AC
∴AC=2
故答案為:2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,AD是中線,P為AD上一點,CFAB,BP延長線交AC、CF于E、F,
求證:PB2=PE•PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A、B是⊙O上的兩點,AC是⊙O的切線,∠B=70°,則∠BAC等于( 。
A.70°B.35°C.20°D.10°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

選修4-1:幾何證明選講
如圖,已知四邊形ABCD內(nèi)接于ΘO,且AB是的ΘO直徑,過點D的ΘO的切線與BA的延長線交于點M.
(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

選修4-1:幾何證明選講
如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B、C兩點,弦CDAP,AD、BC相交于點E,F(xiàn)為CE上一點,且DE2=EF•EC.
(1)求證:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了了解名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為的樣本,則分段的間隔為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某學(xué)校有男學(xué)生1200人,女生1000人,用分層抽樣的方法從全體學(xué)生中抽取一個容量為n的樣本,若女生抽取80人,則n=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,E是   ABCD邊BC上一點,=4,AE交BD于F,
=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)已知G是△ABC的重心,AG交BC于E,BG交AC于F,△EFG的面積為1,則△EFC的面積為     。

查看答案和解析>>

同步練習(xí)冊答案