已知f(x)=x-(a>0),g(x)=2lnx+bx且直線y=2x-2與曲線y=g(x)相切.

(1)若對(duì)[1,+)內(nèi)的一切實(shí)數(shù)x,小等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;

(2)當(dāng)a=l時(shí),求最大的正整數(shù)k,使得對(duì)[e,3](e=2.71828是自然對(duì)數(shù)的底數(shù))內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,,xk都有成立;

(3)求證:

 

【答案】

(1);(2)的最大值為

(3)當(dāng)時(shí),根據(jù)(1)的推導(dǎo)有,時(shí),,即.令,得,化簡(jiǎn)得,

。

【解析】

試題分析:(1)設(shè)點(diǎn)為直線與曲線的切點(diǎn),則有.     (*)

,.  (**)

由(*)、(**)兩式,解得,.    2分

整理,得,

,要使不等式恒成立,必須恒成立.   

設(shè),

,當(dāng)時(shí),,則是增函數(shù),

,是增函數(shù),,.5分

因此,實(shí)數(shù)的取值范圍是.      6分

(2)當(dāng)時(shí),,

上是增函數(shù),上的最大值為

要對(duì)內(nèi)的任意個(gè)實(shí)數(shù)都有

成立,必須使得不等式左邊的最大值小于或等于右邊的最小值,

當(dāng)時(shí)不等式左邊取得最大值,時(shí)不等式右邊取得最小值.

,解得

因此,的最大值為.                10分

(3)證明(法一):當(dāng)時(shí),根據(jù)(1)的推導(dǎo)有,時(shí),

.        11分

,得,   

化簡(jiǎn)得,        13分

.    14分

(法二)數(shù)學(xué)歸納法:當(dāng)時(shí),左邊=,右邊=

根據(jù)(1)的推導(dǎo)有,時(shí),,即

,得,即

因此,時(shí)不等式成立.                    11分

(另解:,,即.)

假設(shè)當(dāng)時(shí)不等式成立,即,

則當(dāng)時(shí),,

要證時(shí)命題成立,即證

即證

在不等式中,令,得           

.    

時(shí)命題也成立.              13分

根據(jù)數(shù)學(xué)歸納法,可得不等式對(duì)一切成立. 14分

考點(diǎn):函數(shù)的性質(zhì);導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;數(shù)學(xué)歸納法。

點(diǎn)評(píng):(1)本題主要考查導(dǎo)數(shù)的幾何意義及其應(yīng)用和數(shù)學(xué)歸納法等綜合知識(shí),考查學(xué)生的計(jì)算推理能力及分析問(wèn)題、解決問(wèn)題的能力及創(chuàng)新意識(shí).對(duì)學(xué)生的能力要求較高,尤其是分析問(wèn)題解決問(wèn)題的能力。(2)解決恒成立問(wèn)題常用變量分離法,變量分離法主要通過(guò)兩個(gè)基本思想解決恒成立問(wèn)題, 思路1:上恒成立;思路2: 上恒成立。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的函數(shù).設(shè)f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個(gè)偶函數(shù),且h(1)=3,則函數(shù)h (x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域?yàn)?span id="yvl3bj5" class="MathJye">[
1
a
,1],若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分別求f(x)、g(x)的定義域,并求f(x)•g(x)的值;(2)求f(x)的最小值并說(shuō)明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在滿足下列條件的正數(shù)t,使得對(duì)于任意的正
數(shù)x,a、b、c都可以成為某個(gè)三角形三邊的長(zhǎng)?若存在,則求出t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案