已知f(x)=3x2-4x+5,g(x)=f(x-2),則g(3)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由g(x)=f(x-2)得g(3)=f(1),代入f(x)的解析式求出值.
解答: 解:∵g(x)=f(x-2),
∴g(3)=f(3-2)=f(1)=3-4+5=4
故答案為:4;
點(diǎn)評:本題考查由解析式求函數(shù)值,屬于一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-3x+2
的單調(diào)遞增區(qū)間為(  )
A、[
3
2
,+∞)
B、(-∞,
3
2
]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x(x<1)
1
2
(x≥1)
,若0<f (x0)<1,則x0的取值范圍是( 。
A、[1,+∞)
B、(1,+∞)
C、(-∞,1]
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P={x|2≤x≤6},Q={x|a≤x≤a+1}若Q⊆P,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為a,E,F(xiàn)分別是棱AB,BC上的點(diǎn),且AE=BF,若A1E與C1F所成的角最小,則有(  )
A、AE=BF=
1
4
a
B、AE=BF=
1
3
a
C、AE=BF=
2
5
a
D、AE=BF=
1
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲,乙兩人約定上午7:00至8:00之間到某站乘公共汽車,在這段時間內(nèi)有2班公共汽車,它們開車的時刻分別是7:30和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達(dá)車站的時刻是互相不牽連的,且每人在7時到8時的任何時刻到達(dá)車站是等可能的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{(x,y)
.
y=-x+2
y=
1
2
x+2
}
⊆{(x,y)|y=3x+b},則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,底面abcd是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD,設(shè)E、F分別為PC、BD的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求空間幾何體BCDP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E為正方體的棱AA1的中點(diǎn),F(xiàn)為棱AB上的一點(diǎn),且∠C1EF=90°,則AF:FB=( 。
A、1:1B、1:2
C、1:3D、1:4

查看答案和解析>>

同步練習(xí)冊答案