設(shè)分別是橢圓:的左、右焦點,過傾斜角為的直線 與該橢圓相交于P,兩點,且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點 滿足,求該橢圓的方程.
(1) (2)

試題分析:解:(Ⅰ)直線斜率為1,設(shè)直線的方程為,其中. 2分
設(shè),則兩點坐標滿足方程組
化簡得 4分
,
因為,所以. 6分
,故,
所以橢圓的離心率.  8分
(Ⅱ)設(shè)的中點為,由(1)知
 10分
.   12分
,得,從而.故橢圓的方程為 14分
點評:主要是考查了直線與橢圓的位置關(guān)系的運用,屬于中檔題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知,,直線與線段、分別交于點、.

(1)當時,求以為焦點,且過中點的橢圓的標準方程;
(2)過點作直線于點,記的外接圓為圓.
①求證:圓心在定直線上;
②圓是否恒過異于點的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線兩不同點,交軸于點,已知,則
是否為定值?若是,求出其值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且.
(1)求點T的橫坐標;
(2)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)橢圓C:的左、右焦點分別為、,P是C上的點,,
=,則C的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,上、下焦點分別為、,
向量.直線與橢圓交于兩點,線段中點為
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)是橢圓的左焦點,直線方程為,直線軸交于點,、分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓,是其左頂點和左焦點,是圓上的動點,若,則此橢圓的離心率是       

查看答案和解析>>

同步練習冊答案