(10分)如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED。
(1)證明:CD//AB;(2)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓。
(1)EC=ED,∠EDC=∠ECD,A,B,C,D四點(diǎn)共圓,∠EDC=∠EBA,CD∥AB
(2)AE=BE,EF=EG,故∠EFD=∠EGC,∠FED=∠GEC,△EFA≌△EGB,故∠FAE=∠GBE,CD∥AB,∠FAB=∠GBA,所以∠AFG+∠GBA=180°故A,B.G,F(xiàn)四點(diǎn)共圓
解析試題分析:(I)因?yàn)镋C=ED,
所以∠EDC=∠ECD
因?yàn)锳,B,C,D四點(diǎn)在同一圓上,
所以∠EDC=∠EBA
故∠ECD=∠EBA,
所以CD∥AB
(Ⅱ)由(I)知,AE=BE,
因?yàn)镋F=EG,故∠EFD=∠EGC
從而∠FED=∠GEC
連接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE
又CD∥AB,∠FAB=∠GBA,
所以∠AFG+∠GBA=180°
故A,B.G,F(xiàn)四點(diǎn)共圓
考點(diǎn):平面幾何證明
點(diǎn)評(píng):四點(diǎn)共圓則四邊形對(duì)角互補(bǔ)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2,OA=OM,求MN的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,PA為0的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA ="10,PB" =5、
(I)求證:;
(2)求AC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-1:幾何證明選講
如圖,AB是的直徑,AC是弦,直線CE和切于點(diǎn)C, AD丄CE,垂足為D.
(I) 求證:AC平分;
(II) 若AB=4AD,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)選修4-1:幾何證明選講
如圖所示,已知與⊙相切,為切點(diǎn),為割線,弦,、相交于點(diǎn),為上一點(diǎn),且
(1) 求證:;
(2) (2)求證:·=·.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED.
(I)證明:CD//AB;
(II)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,是⊙的直徑,是弦,∠BAC的平分線交⊙于,交延長(zhǎng)線于點(diǎn),交于點(diǎn).
(1)求證:是⊙的切線;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)⊙O的割線PAB交⊙O于A、B兩點(diǎn),割線PCD經(jīng)過圓心。
已知PA=6,AB=,PO=12.求⊙O的半徑。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com