4.平行六面體ABCD-A'B'C'D'中,若$\overrightarrow{AC'}=x\overrightarrow{AB}+2y\overrightarrow{BC}-3z\overrightarrow{CC'}$,則x+y+z=( 。
A.$\frac{7}{6}$B.1C.$\frac{5}{6}$D.$\frac{2}{3}$

分析 由題意,$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$,結(jié)合條件,求出x,y,z,即可得出結(jié)論.

解答 解:由題意,$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$,
∵$\overrightarrow{AC'}=x\overrightarrow{AB}+2y\overrightarrow{BC}-3z\overrightarrow{CC'}$,
∴x=1,y=$\frac{1}{2}$,z=-$\frac{1}{3}$,
∴x+y+z=1+$\frac{1}{2}-\frac{1}{3}$=$\frac{7}{6}$.
故選:A.

點評 本題考查空間向量的基本定理及其意義,考查空間向量的加法運算,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,若b,c,a成等比數(shù)列,且a=$\frac{1}{2}$b,則cosA=$\frac{5\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某商場為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購鞋的尺寸,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知從左到右前3個小組的頻率之比為1:2:3,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數(shù)為10,則第4小組顧客的人數(shù)是( 。
A.15B.20C.25D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.等差數(shù)列{an}中,若a2+a4+a6=3,則a1+a3+a5+a7=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1cm,則四面體P-ABC的外接球(頂點都在球面上)的表面積為3πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知各項均不為零的數(shù)列{an}滿足an+12=anan+2,且32a8-a3=0,記Sn是數(shù)列{an}的前n項和,則$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值為(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下面表述不正確的是(  )
A.終邊在x軸上角的集合是{α|α=kπ,k∈Z}
B.終邊在y軸上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$
C.終邊在坐標軸上的角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$
D.終邊在直線y=-x上角的集合是 $\{α|α=\frac{π}{4}+2kπ,k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設集合A={0,2,4,6,8,10},B={4,8},則∁AB=( 。
A.{4,8}B.{0,2,6,10}C.x>5D.x>3

查看答案和解析>>

同步練習冊答案