設(shè)實數(shù)x,y滿足x2-y2+x+3y-2≥0,當(dāng)x∈[-2,2]時,x+y的最大值是( 。
分析:在平面直角坐標(biāo)系中,畫出實數(shù)x,y滿足x2-y2+x+3y-2≥0,的可行域,確定目標(biāo)函數(shù)的最大值即可.
解答:解:實數(shù)x,y滿足x2-y2+x+3y-2≥0,轉(zhuǎn)化為(x+
1
2
2-(y-
3
2
2≥0.即|x+
1
2
|≥|y-
3
2
|
當(dāng)x∈[-2,2]時,
|x+
1
2
|≥|y-
3
2
|表示的可行域如圖:
要求x+y的最大值,就是求z=x+y經(jīng)過可行域內(nèi)的點A時取得.
y=x+2
x=2
可得A(2,4),
所以x+y的最大值為:6.
故選C.
點評:本題考查簡單線性規(guī)劃的應(yīng)用,轉(zhuǎn)化思想的應(yīng)用,考查表達式的幾何意義與計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、設(shè)實數(shù)x,y滿足x2+2xy-1=0,則x+y的取值范圍是
(-∞,-1]∪[1,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足x2+(y-1)2=1,若不等式x+y+C≥0對任意的x,y都成立,則實數(shù)C的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足x2+(y-2)2=1,若對滿足條件x,y,不等式x2+y2+c≤0恒成立,則c的取值范圍是
c≤-9
c≤-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y 滿足x2+y2+xy=1,求x+y的最大值.
題設(shè)條件“x2+y2+xy=1”有以下兩種等價變形:
(x+
y
2
)2+(
3
2
y)2=1
;
②x2+y2-2xycos120°=1.
請按上述變形提示,用兩種不同的方法分別解答原題.

查看答案和解析>>

同步練習(xí)冊答案