在△ABC中,角A、B、C所對邊分別為a、b、c,若bcosB=ccosC成立,則△ABC是( 。
分析:由正弦定理,得sinBcosB=sinCcosC,再用二倍角正弦公式化簡得sin2B=sin2C,因此2B=2C或2B+2C=π,解之得B=C或B+C=
π
2
,△ABC是等腰三角形或直角三角形.
解答:解:∵bcosB=ccosC
∴由正弦定理,得sinBcosB=sinCcosC
即2sinBcosB=2sinCcosC,可得sin2B=sin2C
∵B、C∈(0,π),
∴2B=2C或2B+2C=π,解之得B=C或B+C=
π
2

因此△ABC是等腰三角形或直角三角形
故選:D
點(diǎn)評:本題給出三角形ABC的邊角關(guān)系,判斷三角形的形狀,著重考查了二倍角的三角函數(shù)公式和正余弦定理等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案