計算:
(1)(2a-3b -
2
3
)•(-3a-1b)÷(4a-4b -
5
3
);
(2)lg14-2lg 
7
3
+lg7-lg18
考點:對數(shù)的運算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)冪的運算法則即可得出;
(2)利用對數(shù)的運算法則即可得出.
解答: 解:(1)原式=
2×(-3)
4
a-3-1-(-4)b-
2
3
+1-(-
5
3
)
=-
3
2
b2

(2)原式=lg
14×7
49
9
×18
=lg1=0.
點評:本題考查了指數(shù)冪與對數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“方程
x2
a-1
+
y2
7-a
=1表示焦點在y軸上橢圓”,命題q:“?x∈R使得x2+(a-1)x+1<0”(a∈R).
(1)若命題p為真命題,求a的取值范圍;
(2)若命題p∧q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

算法的每一步都應(yīng)該是確定的,能有效的執(zhí)行的,并且得到確定的結(jié)果,這是指算法的( 。
A、有窮性B、確定性
C、普遍性D、不唯一性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點M(0,-1)、A(1,-2)和B(2,1).
(1)求三角形MAB的面積.
(2)經(jīng)過點M作直線l,若直線l與線段AB總有公共點,求直線l的斜率k和傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈[0,
π
2
]
,則sinx
1
2
的概率是( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+2x+3
的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
2
1+i
對應(yīng)的向量的模是( 。
A、
2
B、1
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓的方程為x2+y2=4,過點M(0,1)的直線L交圓于點A,B,O是坐標原點,點P為AB的中點,當(dāng)L繞點M旋轉(zhuǎn)時,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在正實數(shù)集上的函數(shù)f(x)=
1
2
x2+2ax,g(x)=3a2
lnx+b,其中a>0,若兩曲線y=f(x),y=g(x)在某公共點處的切線相同.
(1)用a表示b,求b的最大值,并判斷方程f(x)=g(x)(x>0)的解的個數(shù);
(2)若a=1,正項數(shù)列{an}滿足a1=2,an+1=f(an)(n∈N*),求證:
1
a1
+
1
a2
+…+
1
an
3
4

查看答案和解析>>

同步練習(xí)冊答案