在邊長為的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?
當(dāng)箱底邊長為時,箱子容積最大,最大容積是.
解析試題分析:設(shè)箱底邊長為,則無蓋的方底箱子的高,其體積為,從而可得,通過求導(dǎo),討論導(dǎo)數(shù)的正負(fù)得函數(shù)的增減性,根據(jù)函數(shù)的單調(diào)性可求體積的最大值.
試題解析:設(shè)箱底邊長為,則無蓋的方底箱子的高,其體積為
則
令,得,解得(舍去)
當(dāng)時,;當(dāng)時,
所以時,單調(diào)遞增;時,單調(diào)遞減,所以函數(shù)在時取得極大值, 結(jié)合實(shí)際情況,這個極大值就是函數(shù)的最大值.
故當(dāng)箱底邊長為時,箱子容積最大,最大容積是.
考點(diǎn):導(dǎo)數(shù)在實(shí)際中的運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域是,其中常數(shù).
(1)若,求的過原點(diǎn)的切線方程.
(2)當(dāng)時,求最大實(shí)數(shù),使不等式對恒成立.
(3)證明當(dāng)時,對任何,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)..
(1)設(shè)曲線處的切線為,點(diǎn)(1,0)到直線l的距離為,求a的值;
(2)若對于任意實(shí)數(shù)恒成立,試確定的取值范圍;
(3)當(dāng)是否存在實(shí)數(shù)處的切線與y軸垂直?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,若方程在上有兩個實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
巳知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)若在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)記,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com