【題目】已知函數(shù)f(x)=|2x﹣1|,當a<b<c時,f(a)>f(c)>f(b),那么正確的結論是(
A.2a>2b
B.2a>2c
C.2a<2c
D.2a+2c<2

【答案】D
【解析】解:∵函數(shù)f(x)=|2x﹣1|,
∴f(x)=
畫出函數(shù)圖象如下圖所示:

可知:函數(shù)f(x)在區(qū)間(﹣∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增.
當0≤a<b<c時,f(x)在區(qū)間(0,+∞)上單調遞增,不滿足f(a)>f(b)>f(c),因此必有a<0.
當a<0<c時,1﹣2a>2c﹣1,化為2a+2c<2;
當a<b<c≤0時,f(x)在區(qū)間(﹣∞,0]上單調遞減.
∴1>1﹣2a>1﹣2c≥0,
∴2c≤1,2a<1,
∴2a+2c<2.
綜上可知:D一定正確.
故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為R,f(﹣1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實數(shù)m取什么數(shù)值時,復數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實數(shù);
(2)虛數(shù);復數(shù)z=m2﹣1+(m2﹣m﹣2)i是虛數(shù), ∴m2﹣m﹣2≠0
∴m≠﹣1.m≠2
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ABADADBC,APABAD=1.

(Ⅰ)若直線PBCD所成角的大小為BC的長;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1).選修4—1:幾何證明選講

如圖,CD是圓O的切線,切點為D,CA是過圓心O的割線且交圓O于點B,DADC.求證: CA3CB

(2).選修4—2矩陣與變換

設二階矩陣A

(Ⅰ)求A1;

(Ⅱ)若曲線C在矩陣A對應的變換作用下得到曲線C6x2y21,求曲線C的方程.

(3).選修4—4坐標系與參數(shù)方程

在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),圓C的參數(shù)方程為θ為參數(shù)).若直線l與圓C相切,求實數(shù)a的值.

(4).選修4—5:不等式選講

解不等式:|x2||x1|≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體中,四邊形是菱形, 相交于, ,點在平面上的射影恰好是線段的中點.

(Ⅰ)求證: 平面;

(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|﹣|x|﹣2
(1)解不等式f(x)≥0
(2)若存在實數(shù)x,使得f(x)≤|x|+a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C對邊的邊長分別是a,b,c.已知c=4,C=
(1)若△ABC的面積等于4 ,求a,b;
(2)若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)請補全函數(shù)f(x)的圖象

(2)求函數(shù)f(x)的表達式,
(3)寫出函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案