7.已知z1=3+2i,z2=-2+i,則$\overline{{z}_{1}}$+$\overline{{z}_{2}}$=( 。
A.1+3iB.1+iC.1-iD.1-3i

分析 直接由z1=3+2i,z2=-2+i,求出$\overline{{z}_{1}}$,$\overline{{z}_{2}}$,然后代入$\overline{{z}_{1}}$+$\overline{{z}_{2}}$計算得答案.

解答 解:由z1=3+2i,z2=-2+i,
得$\overline{{z}_{1}}=3-2i$,$\overline{{z}_{2}}=-2-i$.
則$\overline{{z}_{1}}$+$\overline{{z}_{2}}$=3-2i+(-2-i)=1-3i.
故選:D.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.甲、乙兩位同學期末考試的語文、數(shù)學、英語、物理成績?nèi)缜o葉圖所示,其中甲的一個數(shù)據(jù)記錄模糊,無法辨認,用a來表示,已知兩位同學期末考試四科的總分恰好相同,則甲同學四科成績的中位數(shù)為( 。
A.92B.92.5C.93D.93.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥x+2}\\{x+y≤4}\\{2y≥4-x}\end{array}}\right.$,則$z={(\frac{1}{2})^{2x-y}}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=2$\sqrt{2}$cos($\frac{π}{4}$+θ).
(I)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線l與曲線C相交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2alnx-2(a+1)x+x2(a≤1)
(1)討論f(x)的單調(diào)性;
(2)若f(x)在區(qū)間[$\frac{1}{e}$,e2]上有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)兩向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$滿足$|\overrightarrow{e_1}|=2$,$|\overrightarrow{e_2}|=1$,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,$\vec a=2$$\overrightarrow{e_1}$+$\overrightarrow{e_2}$$\vec b=\overrightarrow{e_1}+2\overrightarrow{e_2}$,則$\vec a$在$\vec b$上的投影為( 。
A.$\frac{{5\sqrt{3}}}{2}$B.$\frac{{5\sqrt{21}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)$f(x)=\frac{{-2{x^2}+x-3}}{x},\;(x>0)$的最大值,以及此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A、B、C的對邊分別為a,b,c,且$\frac{c}{cosC}$=$\frac{a+b}{cosA+cosB}$.
(1)求角A的大。
(2)若△ABC的外接圓直徑為1,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)滿足f(log3x)=x-log3(x2).
(1)求函數(shù)f(x)的解析式;
(2)當n∈N*時,試比較f(n)與n3的大小,并用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案