【題目】設(shè)直線l的方程為(a+1)x+y+2-a=0(aR).

1若l在兩坐標(biāo)軸上的截距相等,求l的方程;

2若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2)

【解析】

試題分析:(1)直線在兩坐標(biāo)軸上的截距相等,即與兩坐標(biāo)軸交點(diǎn)的橫(縱)坐標(biāo)相等,所以先求得兩交點(diǎn)的坐標(biāo),然后列等式求解即可;(2)當(dāng)直線不經(jīng)過(guò)第二象限時(shí),有三種可能:一,直線與縱軸平行且與橫軸的非負(fù)半軸相交;二,與橫軸平行且與縱軸的非負(fù)半軸相交;三,直線的斜率為正數(shù),且原點(diǎn)在直線的上方;據(jù)此列不等式求實(shí)數(shù)的取值范圍.

試題解析:(1)當(dāng)a=-1時(shí),直線l的方程為y+3=0,不符合題意;

當(dāng)a≠-1時(shí),直線l在x軸上的截距為,在y軸上的截距為a-2,因?yàn)閘在兩坐標(biāo)軸上的截距相等,所以,解得a=2或a=0,

所以直線l的方程為3x+y=0或x+y+2=0.

(2)將直線l的方程化為y=-(a+1)x+a-2,所以所以

解得a≤-1. 綜上所述,a≤-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò),若有4個(gè)不同的正數(shù)滿足,且,則從這四個(gè)數(shù)中任意選出兩個(gè),它們的和不超過(guò)5的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過(guò)橢圓左焦點(diǎn)的直線、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

[5060

[60,70

[7080

[80,90

[90100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程x2y22(m3)x2(14m2)y16m490表示一個(gè)圓.

(1) 求實(shí)數(shù)m的取值范圍;

(2) 求該圓半徑r的取值范圍;

(3) 求該圓心的縱坐標(biāo)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條件;條件:直線與圓相切,則的( )

A. 充分必要條件 B. 必要不充分條件

C. 充分不必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長(zhǎng)方形的長(zhǎng)為x米.

(Ⅰ求底面積,并用含x的表達(dá)式表示池壁面積;

(Ⅱ怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

I)設(shè),求的單調(diào)區(qū)間;

II)若處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案