已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線經(jīng)過(guò)、兩點(diǎn)
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線于、兩點(diǎn),且線段被圓:三等分,求實(shí)數(shù)、的值
(1);(2),
解析試題分析:(1)求雙曲線的方程,可設(shè)雙曲線的方程是,利用待定系數(shù)法求出的值即可,由雙曲線經(jīng)過(guò)、兩點(diǎn),將、代入上面方程得,,解方程組,求出的值,即可求出雙曲線的方程;(2)求實(shí)數(shù)、的值,直線交雙曲線于、兩點(diǎn),且線段被圓:三等分,可知圓心與的中點(diǎn)垂直,設(shè)的中點(diǎn),則,而圓心,因此只需找出的中點(diǎn)與的關(guān)系,可將代人,得,設(shè),利用根與系數(shù)關(guān)系及中點(diǎn)坐標(biāo)公式得,這樣可求得的值,由的值可求出的長(zhǎng),從而得圓的弦長(zhǎng),利用勾股定理可求得的值
試題解析:(1)設(shè)雙曲線的方程是,依題意有 2分
解得 3分 所以所求雙曲線的方程是 4分
(2)將代人,得 (*)
6分
設(shè),的中點(diǎn),則
, 7分
則,, 8分
又圓心,依題意,故,即 9分
將代人(*)得,解得
10分
故直線截圓所得弦長(zhǎng)為,又到直線的距離 11分
所以圓的半徑
所以圓的方程是  
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓=1上任一點(diǎn)P,由點(diǎn)P向x軸作垂線PQ,垂足為Q,設(shè)點(diǎn)M在PQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足=+ (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C:=1(a>b>0)的離心率e=,右焦點(diǎn)到直線=1的距離d=,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點(diǎn),證明,點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,點(diǎn),過(guò)的直線交拋物線于兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)等于,求直線的斜率;
(2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,左、右兩個(gè)焦點(diǎn)分別為、,上頂點(diǎn),為正三角形且周長(zhǎng)為6,直線與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線與能否垂直?若能,之間滿足什么關(guān)系;若不能,說(shuō)明理由;
(2)已知為的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點(diǎn)為,求弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)到、的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知是橢圓的右焦點(diǎn);圓與軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).
(1)求橢圓的離心率;
(2)設(shè)圓與軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com