已知橢圓E的中心在坐標(biāo)原點O,兩個焦點分別為A(-1,0),B(1,0),一個頂點為H(2,0).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)對于x軸上的點P(t,0),橢圓E上存在點M,使得MP⊥MH,求實數(shù)t的取值范圍.
分析:(1)由兩個焦點分別為A(-1,0),B(1,0),上頂點為D(2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,
最后由橢圓的焦點在X軸上求得方程.
(2)利用向量垂直即可求得M點的橫坐標(biāo)x0,從而解決問題.
解答:解:(1)由題意得,c=1,a=2,則b=
3

故所求的橢圓標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
;
(2)設(shè)M(x0,y0)(x0≠±2),則
x02
4
+
y02
3
=1
      ①
又由P(t,0),H(2,0).則
MP
=(t-x0,-y0)
,
MH
=(2-x0,-y0)

由MP⊥MH可得
MP
MH
=0
,即(t-x0,-y0)•(2-x0,-y0)=(t-x0)•(2-x0)+y02=0
由①②消去y0,整理得t(2-x0)=-
1
4
x02+2x0-3
    ②
∵x0≠2,∴t=
1
4
x0-
3
2

∵-2<x0<2,∴-2<t<-1
故實數(shù)t的取值范圍為(-2,-1).
點評:本題考查直線和橢圓的位置關(guān)系、考查存在性問題,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過A(-2,0),B(2,0),C(1,
32
)
三點
(1)求橢圓方程
(2)若此橢圓的左、右焦點F1、F2,過F1作直線L交橢圓于M、N兩點,使之構(gòu)成△MNF2證明:△MNF2的周長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
32
)
三點.
(1)求橢圓E的方程:
(2)若點D為橢圓E上不同于A、B的任意一點,F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時.求內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)已知橢圓E的中心在坐標(biāo)原點O,焦點在坐標(biāo)軸上,且經(jīng)過M(2,1),N(2
2
,0)
兩點.
(1)求橢圓E的方程;
(2)若平行于OM的直線l在y軸上的截距為b(b<0),直線l交橢圓E于兩個不同點A、B,直線MA與MB的斜率分別為k1、k2,求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
32
)
三點.
(1)求橢圓E的方程;
(2)若點D為橢圓E上不同于A、B的任意一點,F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標(biāo);
(3)若直線l:y=k(x-1)(k≠0)與橢圓E交于M、N兩點,證明直線AM與直線BN的交點在定直線上并求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點O,焦點在坐標(biāo)軸上,且經(jīng)過M(2,1)、N(2
2
,0)
兩點,P是E上的動點.
(1)求|OP|的最大值;
(2)若平行于OM的直線l在y軸上的截距為b(b<0),直線l交橢圓E于兩個不同點A、B,求證:直線MA與直線MB的傾斜角互補.

查看答案和解析>>

同步練習(xí)冊答案