設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列為假命題的是( 。
A、若m⊥α,n∥α,則m⊥n
B、若α∥β,β∥γ,m⊥α,則m⊥γ
C、若m⊥α,n⊥β,m∥n,則α∥β
D、若α⊥γ,β⊥γ,則α∥β
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面的位置關(guān)系求解.
解答: 解:若m⊥α,n∥α,則由直線與平面垂直的性質(zhì)得m⊥n,故A正確;
若α∥β,β∥γ,m⊥α,
則平面與平面平行的判定定理和直線與平面垂直的判定定理得m⊥γ,故B正確;
若m⊥α,n⊥β,m∥n,則平面與平面平行的判定定理得α∥β,故C正確;
若α⊥γ,β⊥γ,則α與β平行或相交,故D錯誤.
故選:D.
點評:本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△A BC中,角 A、B、C的對邊長分別是a、b、c,若
AB
AC
=0
a=2
5
,b+c=6,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(
1
2
|x|,x∈R
(1)請畫出函數(shù)f(x)的大致圖象;
(2)若不等式f(x)+f(2x)≤k對于任意的x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2-4x-2y+m=0上有且只有三個點到直線x+
3
y-
3
=0的距離為2,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)市場調(diào)查,某超市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價格(元)均為時間t(天)的函數(shù),且銷售量近似滿足g(t)=80-2t(件),價格近似滿足f(t)=20-
1
2
|t-10|(元).
(1)試寫出該種商品的日銷售額y與時間t(0≤t≤20)的函數(shù)關(guān)系表達式;
(2)求該種商品的日銷售額y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點(1,0)且圓心在y軸上的圓被x軸分成的兩段弧長之比為1:2,則圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年國慶節(jié)期間,甲、乙、丙、丁四位同學(xué)決定去A、B兩個學(xué)校參觀學(xué)習(xí),私人約定通過拋硬幣的形式?jīng)Q定自己是去A校還是B校,每人拋擲2枚硬幣一次,若都是正面向上則去A校,其余情況則去B校,假設(shè)每人拋擲硬幣是相互獨立的.
(Ⅰ)求這四人中去A校的人數(shù)大于去B校的人數(shù)的概率;
(Ⅱ)記去A校的人數(shù)為X,求X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形ABC的斜邊長AB=2,現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當∠A=30°時,求此旋轉(zhuǎn)體的體積與表面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且b2+c2+bc-a2=0,則=
asin(30°-C)
b-c
( 。
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案