已知在△ABC中,B、C坐標分別為B (0,-4),C (0,4),且,頂點A
的軌跡方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)
B
因為所以頂點A的軌跡是以B、C為焦點的橢圓去年與y軸的交點。
故其軌跡方程為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓C:上有一動點P,P到橢圓C的兩焦點 F1,F(xiàn)2的距離之和等于2,△PF1F2的面積最大值為1
(I)求橢圓的方程
(II)若過點M(2,0)的直線l與橢圓C交于不同兩點A、B,(O為坐標原點)且| ,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓M:(a>b>0)的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形的周長為6+4
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l:x=ky+m與橢圓M交手A,B兩點,若以AB為直徑的圓經(jīng)過橢圓的右頂點C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中心在原點,焦點在軸上的雙曲線的離心率,其焦點到漸近線的距離為1,則此雙曲線的方程為(        )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C: 的一個頂點為A(2,0),離心率為,直線與橢圓C交于不同的兩點M,N。
(1)  求橢圓C的方程
(2)  當的面積為時,求k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,P為橢圓上一點且,則此橢圓離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點,過的右焦點任作直線,設(shè),兩點(異于的左、右頂點),再分別過點,的切線,記相交于點.
(1)求橢圓的標準方程;
(2)證明:點在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率是       (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P為橢圓上一點,F1、F2是橢圓的兩個焦點,,則△F1PF2的面積是          .

查看答案和解析>>

同步練習(xí)冊答案