已知橢圓M:(a>b>0)的離心率為,且橢圓上一點與橢圓的兩個焦點構成的三角形的周長為6+4
(Ⅰ)求橢圓M的方程;
(Ⅱ)設直線l:x=ky+m與橢圓M交手A,B兩點,若以AB為直徑的圓經過橢圓的右頂點C,求△ABC面積的最大值.
(Ⅰ)(Ⅱ)時,取得最大值為.
(1)由題意可知2a+2c和e的值,所以可以求出a,b,c進而確定橢圓方程.
(2)以AB為直徑的圓過右頂點C,實質是,然后用坐標表示出來,再通過直線l的方程與橢圓方程聯(lián)立,借助韋達定理和判斷式把△ABC面積表示成關于k的函數(shù),然后利用函數(shù)的方法求最值.
(Ⅰ)因為橢圓上一點和它的兩個焦點構成的三角形周長為,∴, 又橢圓的離心率為,即,所以,
,.  ………… 3分∴,橢圓的方程為.……4分
(Ⅱ)由直線的方程.聯(lián)立 消去,………… 5分     
,,則有,. ① ……… 6分
因為以為直徑的圓過點,所以 .由 ,得 .…………… 7分
代入上式,得 .
將 ① 代入上式,解得 (舍). ……… 8分
所以,記直線軸交點為,則點坐標為,
所以
,則.
所以當時,取得最大值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓(a>b>0)的左右焦點分別為F1,F2,P是橢圓上一點。PF1F2為以F2P為底邊的等腰三角形,當60°<PF1F2120°,則該橢圓的離心率的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩點,曲線上的動點滿足,直線與曲線交于另一點
(Ⅰ)求曲線的方程;
(Ⅱ)設,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為F1和F2 ,以F1、F2為直徑的圓經過點M(0,b).(1)求橢圓的方程;(2)設直線l與橢圓相交于A,B兩點,且.求證:直線l在y軸上的截距為定值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題滿分14分)
已知圓M定點,點為圓上的動點,點上,點上,且滿足
(Ⅰ) 求點G的軌跡C的方程;
(Ⅱ) 過點(2,0)作直線l,與曲線C交于A,B兩點,O是坐標原點,設,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知在△ABC中,B、C坐標分別為B (0,-4),C (0,4),且,頂點A
的軌跡方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△中,邊長為、邊上的中線長之和等于.若以邊中點為原點,邊所在直線為軸建立直角坐標系,則△的重心的軌跡方程為:                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的右焦點與拋物線的焦點相同,且的離心率,又為橢圓的左右頂點,其上任一點(異于).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交直線于點,過作直線的垂線交軸于點,求的坐標;
(Ⅲ)求點在直線上射影的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線)的一條漸近線方程為,則該雙曲
線的離心率_________.

查看答案和解析>>

同步練習冊答案