已知等比數(shù)列{an}中,若a1005•a1007=4,則該數(shù)列的前2011項的積為( )
A.42011
B.±42011
C.22011
D.±22011
【答案】分析:根據(jù)等比數(shù)列的性質(zhì)a1005•a1007=a1•a2011=a2•a2010=…=a21006,求出a1006=±2,a1•a2•a3…a2000•a2001=41005•a1006,即可求出結(jié)果.
解答:解:∵a1005•a1007=a21006=4
∴a1006=±2
∴a1•a2•a3…a2010•a2011=(a1•a2011)•(a2•a2010)…(a1005•a1007)•a1006=41005•a1006
當a1006=2時a1•a2•a3…a2010•a2011=(a1•a2011)•(a2•a2010)…(a1005•a1007)•a1006=41005•a1006=22011
當a1006=-2時a1•a2•a3…a2010•a2011=(a1•a2011)•(a2•a2010)…(a1005•a1007)•a1006=41005•a1006=-22011
故選D.
點評:本題考查了等比數(shù)列的性質(zhì),但注意要分類討論,屬于基礎題.