【題目】已知函數(shù)f(x)=x2﹣2ax+a﹣1在區(qū)間[0,1]上有最小值﹣2,求a的值.

【答案】解:∵函數(shù)f(x)=x2﹣2ax+a﹣1的開口向上,對稱軸為x=a,
∴①當a≤0時,f(x)區(qū)間[0,1]上單調(diào)遞增,
∴f(x)min=f(0)=a﹣1=﹣2,
∴a=﹣1;
②當a≥1時,f(x)區(qū)間[0,1]上單調(diào)遞減,
f(x)min=f(1)=1﹣2a+a﹣1=﹣2,
∴a=2;
③當0<a<1時,f(x)min=f(a)=a2﹣2a2+a﹣1=﹣2,即a2﹣a﹣1=0,
解得a= (0,1),
∴a=﹣1或a=2
【解析】利用二次函數(shù)的單調(diào)性與最值,結(jié)合題意即可求得a的值.
【考點精析】掌握二次函數(shù)在閉區(qū)間上的最值是解答本題的根本,需要知道當時,當時,;當時在上遞減,當時,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到y(tǒng)=cos2x的圖象,則只要將f(x)的圖象( 。

A.向左平移個單位長度
B.向右平移個單位長度
C.向左平移個單位長度
D.向右平移個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答
(1)已知a,b為正整數(shù),a≠b,x>0,y>0.試比較 + 的大小,并指出兩式相等的條件.
(2)用(1)所得結(jié)論,求函數(shù)y= + ,x∈(0, )的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為F(-,0),且過點D(2,0).
(1)求該橢圓的標準方程;
(2)設(shè)點A(1,),若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面, , , 的中點.

(Ⅰ)證明;

(Ⅱ)證明平面

(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,且離心率為

1)求橢圓方程;

2)斜率為的直線過點,且與橢圓交于兩點, 為直線上的一點,若為等邊三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的前項和為,公比,

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)設(shè), 為{}的前項和,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P到兩點(0,-),(0,)的距離之和等于4,設(shè)點P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與C交于A、B兩點,k為何值時?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬元,每生產(chǎn)千件,需另投入成本為 (萬元), .每件產(chǎn)品售價為500元.該新產(chǎn)品在市場上供不應求可全部賣完.

(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量千件)的函數(shù)解析式;

(Ⅱ)當年產(chǎn)量為多少千件時,該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤最大.

查看答案和解析>>

同步練習冊答案