【題目】某公司研究開發(fā)了一種新產品,生產這種新產品的年固定成本為150萬元,每生產千件,需另投入成本為 (萬元), .每件產品售價為500元.該新產品在市場上供不應求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(Ⅱ)當年產量為多少千件時,該公司在這一新產品的生產中所獲利潤最大.
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (a>0且a≠1)是定義域為R的奇函數.
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)= ,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}滿足a1=1, (n∈N+).
(1)證明:數列 是等差數列;
(2)求數列{an}的通項公式an;
(3)設bn=n(n+1)an , 求數列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數為0.01;固定部分為a元(a>0).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,其前n項的和為Sn,且對任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求的值;
(2)求證:{an}為等比數列;
(3)已知數列{cn},{dn}滿足|cn|=|dn|=an,p(p≥3)是給定的正整數,數列{cn},{dn}的前p項的和分別為Tp,Rp,且Tp=Rp,求證:對任意正整數k(1≤k≤p),ck=dk.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數y=f(x),若在其定義域內存在x0 , 使得x0f(x0)=1成立,則稱x0為函數f(x)的“反比點”.下列函數中具有“反比點”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com