19.已知數(shù)列{an}是遞增等差數(shù)列,a1=2,其前n項為Sn(n∈N*).且a1,a4,S5+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項an及前n項和Sn;
(Ⅱ)若數(shù)列{bn}滿足bn=${2^{\frac{a_n}{2}-1}}$+1,計算{bn}的前n項和Tn,并用數(shù)學歸納法證明:當n≥5時,n∈N*,Tn>Sn

分析 (I)設(shè)等差數(shù)列{an}的公差為d>0,由a1,a4,S5+2成等比數(shù)列.可得${a}_{4}^{2}$=a1(S5+2),即(2+3d)2=2$(5×2+\frac{5×4}{2}d+2)$,解出d,再利用等差數(shù)列的通項公式及其前n項和公式即可得出.
(Ⅱ)bn=${2^{\frac{a_n}{2}-1}}$+1=2n-1+1,可得{bn}的前n項和Tn=2n+n-1.當n≥5時,n∈N*,Tn>Sn.即證明:2n>n2+1.利用數(shù)學歸納法證明即可得出.

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d>0,
∵a1,a4,S5+2成等比數(shù)列.
∴${a}_{4}^{2}$=a1(S5+2),即(2+3d)2=2$(5×2+\frac{5×4}{2}d+2)$,
化為:9d2-8d-20=0,d>0.
解得d=2,
∴an=2+2(n-1)=2n.
Sn=$\frac{n(2n+2)}{2}$=n2+n.
(Ⅱ)bn=${2^{\frac{a_n}{2}-1}}$+1=2n-1+1,
∴{bn}的前n項和Tn=$\frac{{2}^{n}-1}{2-1}$+n=2n+n-1.
當n≥5時,n∈N*,Tn>Sn.即證明:2n>n2+1.
下面利用數(shù)學歸納法證明:當n≥5時,n∈N*,Tn>Sn
①當n=5時,25=32>26=52+1,即n=1時成立.
②假設(shè)當n=k∈N*(k≥5)時,2k>k2+1成立,
則n=k+1時,2k+1=2×2k>2k2+2,
∵2k2+2-[(k+1)2+1]=k2-2k=k(k-2)>0,
∴2k2+2>(k+1)2+1,
即2k+1>(k+1)2+1,n=k+1時不等式成立.
綜上得當n≥5時,Tn>Sn,n∈N*

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、遞推關(guān)系、數(shù)學歸納法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow a$=(2,-1,3),$\overrightarrow b$=(-4,2,x),使$\overrightarrow a$⊥$\overrightarrow b$成立的x值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=-x2+4x+a(a>0)的圖象與直線x=0,x=3及y=x所圍成的平面圖形的面積不小于$\frac{21}{2}$,則曲線g(x)=ax-4ln(ax+1)在點(1,g(1))處的切線斜率的最小值為-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在△ABC中,AB=AC=3,BC=2,B的角平分線交過點A且與BC平行的直線于D,AC與BD交于點O.
(1)求△OAB與△OBC的面積之比;
(2)求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和Sn,數(shù)列{bn}為等差數(shù)列,b1=1,bn>0(n≥2),b2Sn+an=2且3a2=2a3+a1
(1)求{an}、{bn}的通項公式;
(2)設(shè)cn=$\frac{1}{{a}_{n}}$,Tn=$\frac{b_1}{{{c_1}+1}}+\frac{b_2}{{{c_2}+1}}+…+\frac{b_n}{{{c_n}+1}}$,證明:Tn<$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若直線l過點(-1,2)且與直線x-3y+5=0垂直,則直線l的方程是3x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知兩曲線f(x)=cosx,g(x)=$\sqrt{3}$sinx,x∈(0,$\frac{π}{2}$)相交于點A.若兩曲線在點A處的切線與x軸分別相交于B,C兩點,則線段BC的長為$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,$\sqrt{3}$),若向量$\overrightarrow{c}$滿足($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=0,則|$\overrightarrow{c}$|的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,則目標函數(shù)z=2x+3y的最大值為( 。
A.2B.3C.11D.18

查看答案和解析>>

同步練習冊答案