6.在一個銳二面角的一個面內(nèi)有一點,它到棱的距離等于到另一個平面的距離的2倍,則二面角大小為( 。
A.30°B.45°C.60°D.90°

分析 點P是銳二面角α-l-β中平面α內(nèi)一點,PA⊥l,交l于點A,PB⊥β,交β于點B,從而得到AB⊥l,∠PAB是二面角α-l-β的平面角,由此能求出二面角的大。

解答 解:如圖,點P是銳二面角α-l-β中平面α內(nèi)一點,
PA⊥l,交l于點A,PB⊥β,交β于點B,
∴AB⊥l,∴∠PAB是二面角α-l-β的平面角,
∵點P到棱的距離等于到另一個平面的距離的2倍,
∴PA=2PB,
∴sin∠PAB=$\frac{PB}{PA}$=$\frac{1}{2}$,
∴∠PAB=30°.
∴二面角的大小是30°.
故選:A.

點評 本題考查二面角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意三垂線定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中,真命題是( 。
A.?x∈R,x2≥x
B.命題“若x=1,則x2=1”的逆命題
C.0,β0∈R,使得sin(α00)=sinα0+sinβ0
D.命題“若x≠y,則sinx≠siny”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若數(shù)列{an}滿足$({2n+3}){a_{n+1}}-({2n+5}){a_n}=({2n+3})({2n+5})lg({1+\frac{1}{n}})$,且a1=5,則數(shù)列$\left\{{\frac{a_n}{2n+3}}\right\}$的第100項為( 。
A.2B.3C.1+lg99D.2+lg99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若△ABC是邊長為1的等邊三角形,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,2$\overrightarrow{AE}$=$\overrightarrow{EC}$,則$\overrightarrow{CD}$$•\overrightarrow{BE}$=(  )
A.-$\frac{1}{9}$B.-$\frac{2}{9}$C.-$\frac{1}{3}$D.-$\frac{7}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$+$\frac{m{x}^{2}+(m+n)x+1}{2}$(x∈R),且f(x)有兩個極值點x1,x2,滿足x1∈(0,1),x2∈(1,+∞),點P(m,n)在平面直角坐標(biāo)系中表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex,g(x)=$\frac{n}{2}x+m$,其中e為自然對數(shù)的底數(shù),m,n∈R.
(1)若n=2時方程f(x)=g(x)在[-1,1]上恰有兩個相異實根,求m的取值范圍;
(2)若T(x)=f(x)•g(x),且m=1-$\frac{n}{2}$,求T(x)在[-1,1]上的最大值;
(3)若m=-$\frac{15}{2}$,求使f(x)>g(x)對?x∈R都成立的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義$|\begin{array}{l}{a}&\\{c}&ss0ski0\end{array}|$=ad-bc,則$|{\begin{array}{l}{sin{{50}°}}&{cos{{40}°}}\\{-\sqrt{3}tan{{10}°}}&1\end{array}}|$=( 。
A.2sin10°B.-1C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線ax+by=1與圓C:x2+y2=1相切,則點P(a,b)與圓C的位置關(guān)系在圓上(填“在圓上”、“在圓外”或“在圓內(nèi)”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.觀察如圖,則第( 。┬械母鲾(shù)之和等于20152
A.2014B.2016C.1007D.1008

查看答案和解析>>

同步練習(xí)冊答案