如圖,△ABC中,∠A=60°,∠A的平分線交BC于D,若AB=4,且
AD
=
1
4
AC
AB
(λ∈R)
,則AD的長為( 。
A、2
3
B、3
3
C、4
3
D、5
3
考點(diǎn):向量加減混合運(yùn)算及其幾何意義
專題:平面向量及應(yīng)用
分析:利用已知和向量的平行四邊形法則可得四邊形AEDF是菱形,再利用平行線分線段成比例定理可得ED,再利用向量的三角形法則可得
AD
=
AF
+
FD
,利用數(shù)量積的性質(zhì)即可得出.
解答: 解:如圖所示.
∵∠A的平分線交BC于D,且
AD
=
1
4
AC
AB
(λ∈R)
,
∴四邊形AEDF是菱形.
AE=
1
4
AC
,∴
CE
AC
=
3
4

∵DE∥AB,∴
ED
AB
=
CE
AC
=
3
4

∵AB=4,∴ED=3.
又∠FAE=60°,
AD
=
AF
+
FD

AD
2
=
AF
2
+
FD
2
+2
AF
FD
=32+32+2×3×3×cos60°=27.
|
AD
|=3
3

故選:B.
點(diǎn)評:本題考查了向量的平行四邊形法則、菱形的性質(zhì)、角平分線的性質(zhì)、平行線分線段成比例定理、向量的三角形法則、數(shù)量積的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長等于12,離心率為
1
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓上任取一點(diǎn)P,過P點(diǎn)做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運(yùn)動(dòng)時(shí),求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于以下結(jié)論:
①若y=f(x)是奇函數(shù),則f(0)=0;
②已知p:事件A、B是對立事件,q:事件A、B是互斥事件,則p是q的必要但不充分條件;
③若
a
=(1,2),
b
=(0,-1)
,則
b
a
上的投影為-
2
5
5
;
ln5
5
ln3
3
1
e
(e為自然數(shù));
⑤函數(shù)y=log2
x+2
x
的圖象可以由函數(shù)y=log2x圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位而得.
其中,正確結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=2的切線l與兩坐標(biāo)軸分別交于點(diǎn)A,B兩點(diǎn),則△AOB(O為坐標(biāo)原點(diǎn))面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次選秀比賽中,五位評委為一位表演者打分,若去掉一個(gè)最低分后平均分為90分,去掉一個(gè)最高分后平均分為86分.那么最高分比最低分高
 
分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列5個(gè)命題:
①函數(shù)y=log2(sinx+cosx)的值域?yàn)?span id="mvxp5g0" class="MathJye">(-∞,-
1
2
];
②函數(shù)f(x)=
3
sinx+cosx
的圖象可以由函數(shù)g(x)=2sinx的圖象向左平移
π
6
個(gè)單位得到;
③已知角α,β,γ構(gòu)成公差為
π
3
的等差數(shù)列,若cosβ=
1
3
,則cosα+cosγ=-
1
3

④函數(shù)h(x)=3x|log2x|-1的零點(diǎn)個(gè)數(shù)為1;
⑤若△ABC的三邊a,b,c滿足an+bn=cn(n≥3,n∈N*),則△ABC必為銳角三角形.
其中正確的命題個(gè)數(shù)是(  )
A、2B、3C、4D、5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)-f(x)g′(x)<0,
f(x)
g(x)
=ax
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則關(guān)于x的方程abx2+
2
x+
5
2
=0(b∈(0,1))
有兩個(gè)不同實(shí)根的概率為( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,該三棱錐的體積是( 。
A、18
3
B、36
3
C、12
3
D、24
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|2x-1|-|x+2|≥3的解集是
 

查看答案和解析>>

同步練習(xí)冊答案