8.若關(guān)于x的不等式x2+x+t>0 對x∈R 恒成立,則實(shí)數(shù)t的取值范圍是t>$\frac{1}{4}$..

分析 根據(jù)二次函數(shù)的圖象和性質(zhì)可得△<0.

解答 解:x2+x+t>0 對x∈R 恒成立,
∴△=1-4t<0,
∴t>$\frac{1}{4}$'
∴實(shí)數(shù)t的取值范圍是 t>$\frac{1}{4}$.
故答案為:t>$\frac{1}{4}$.

點(diǎn)評 本題考查了二次函數(shù)的基本性質(zhì),屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.籃子里裝有3個紅球,4個白球和5個黑球,球除顏色外,形狀大小一致.某人從籃子中隨機(jī)取出兩個球,記事件A=“取出的兩個球顏色不同”,事件B=“取出一個紅球,一個白球”,則P(B|A)=( 。
A.$\frac{2}{11}$B.$\frac{12}{47}$C.$\frac{12}{19}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足(1+2i)z=3+4i,則|$\overline{z}$|等于(  )
A.2B.5C.$\frac{\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow a=(m-1,1)$,$\overrightarrow b=(n,-1)$,且m>0,n>0,若$\overrightarrow a∥\overrightarrow b$,則$\frac{1}{m}+\frac{9}{n}$的最小值為( 。
A.12B.16C.20D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知:f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)且f(x)在區(qū)間[$\frac{5π}{12}$,$\frac{11π}{12}$]上單調(diào)遞減,對任意的x1,x2∈[$\frac{5π}{12}$,$\frac{11π}{12}$],|f(x1)-f(x2)|的最大值為4.
(1)求ω和φ的值;
(2)若α,β∈[0,$\frac{2π}{3}$]且f(α)=f(β)=1,求cos$\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知矩陣A=$[\begin{array}{l}{a}&\\{c}&pckj9v6\end{array}]$,若矩陣A屬于特征值λ1=3的一個特征向量為$\overrightarrow{α}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,屬于特征值λ2=1的一個特征向量$\overrightarrow{α}$2=
$[\begin{array}{l}{1}\\{-1}\end{array}]$.
(1)求矩陣A;
(2)若向量$\overrightarrow{β}$=$[\begin{array}{l}{4}\\{2}\end{array}]$,求A2017β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.12B.9C.6D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓x2+y2=4與直線3x-4y+c=0相交于A、B兩點(diǎn),若∠AOB=90°(其中O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)c的值為( 。
A.±5B.±5$\sqrt{2}$C.±10D.±10$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線正弦函數(shù)shx=$\frac{{e}^{x}-{e}^{-x}}{2}$和雙曲余弦函數(shù)chx=$\frac{{e}^{x}+{e}^{-x}}{2}$與我們學(xué)過的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),則下列類比結(jié)論中錯誤的是( 。
A.shx為奇函數(shù),chx為偶函數(shù)B.sh2x=2shxchx
C.sh(x-y)=shxchy-chxshyD.ch(x-y)=chxchy+shxshy

查看答案和解析>>

同步練習(xí)冊答案