A. | 12 | B. | 16 | C. | 20 | D. | 25 |
分析 由$\overrightarrow a∥\overrightarrow b$,推導(dǎo)出m+n=1,從而$\frac{1}{m}+\frac{9}{n}$=($\frac{1}{m}+\frac{9}{n}$)(m+n)=$\frac{9m}{n}+\frac{n}{m}$+10,由此利用m>0,n>0,能求出$\frac{1}{m}+\frac{9}{n}$的最小值.
解答 解:∵$\overrightarrow a=(m-1,1)$,$\overrightarrow b=(n,-1)$,且m>0,n>0,$\overrightarrow a∥\overrightarrow b$,
∴$\frac{m-1}{n}=\frac{1}{-1}$,∴m+n=1,
∴$\frac{1}{m}+\frac{9}{n}$=($\frac{1}{m}+\frac{9}{n}$)(m+n)=$\frac{9m}{n}+\frac{n}{m}$+10
≥2$\sqrt{\frac{9m}{n}×\frac{n}{m}}$+10=16.
當且僅當$\frac{9m}{n}=\frac{n}{m}$時,$\frac{1}{m}+\frac{9}{n}$取最小值16.
故選:B.
點評 本題考查代數(shù)式的最小值的求法,考查向量平行、均值不等式等基礎(chǔ)知識,考查推理論能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{2}$ | B. | x=$\frac{π}{4}$ | C. | x=0 | D. | x=$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | 3 | C. | 2$\sqrt{7}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a | B. | $\sqrt{3}$a | C. | $\sqrt{2}$a | D. | a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com