7.已知f1(x)=sinx+cosx,
f2(x)=f1′(x),
f3(x)=f2′(x),

fn(x)=fn-1′(x),…(n∈N*,n≥2).
則${f_1}(\frac{π}{4})+{f_2}(\frac{π}{4})+…+{f_{2016}}(\frac{π}{4})$的值為0.

分析 求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的運(yùn)算法則可得fn+4(x)=fn(x).n∈N,利用函數(shù)的周期性可知f1(x)+f2(x)+f3(x)+f4(x)=(cosx-sinx)+(-sinx-cosx)+(-cosx+sinx)+(sinx+cosx)=0,即可求得${f_1}(\frac{π}{4})+{f_2}(\frac{π}{4})+…+{f_{2016}}(\frac{π}{4})$=0.

解答 解:∵f(x)=sinx+cosx,
∴f1(x)=f′(x)=cosx-sinx,
f2(x)=f1′(x)=-sinx-cosx,
f3(x)=-cosx+sinx,
f4(x)=sinx+cosx,
以此類推,可得出fn(x)=fn+4(x)
即fn(x)是周期為4的周期函數(shù),
f1(x)+f2(x)+f3(x)+f4(x)=(cosx-sinx)+(-sinx-cosx)+(-cosx+sinx)+(sinx+cosx)=0,
∵2016=504×4
${f_1}(\frac{π}{4})+{f_2}(\frac{π}{4})+…+{f_{2016}}(\frac{π}{4})$=0,
故答案為:0.

點(diǎn)評 本題考查三角函數(shù)的導(dǎo)數(shù)、周期性、及觀察歸納思想的運(yùn)用,考查導(dǎo)數(shù)的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心O為圓心,$\sqrt{{a}^{2}+^{2}}$為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓C的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,且滿足|AB|=2,S△OAB=$\frac{\sqrt{6}}{2}$S△OFB
(1)求橢圓C及其“準(zhǔn)圓”的方程;
(2)對于給定的橢圓C,若點(diǎn)P是射線y=$\sqrt{3}$x(x≥0)與橢圓C的“準(zhǔn)圓”的交點(diǎn),是否存在以P為一個(gè)頂點(diǎn)的“準(zhǔn)圓”的內(nèi)接矩形,使橢圓C完全落在該矩形所圍成的區(qū)域內(nèi)(包括邊界)?若存在,請寫出作圖方法,并予以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若“x<a”是“|2x-5|≤4”的必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.$({-∞,\frac{1}{2}})$B.$({-∞,\frac{1}{2}}]$C.$({\frac{9}{2},+∞})$D.$[{\frac{9}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)對于x>0有意義,且滿足條件f(2)=1,f(xy)=f(x)+f(y),f(x)是減函數(shù).
(1)證明:f(1)=0
(2)若f(x)+f(x-3)≥2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.有300m長的籬笆材料,如果利用已有的一面墻(設(shè)長度夠用)作為一邊,圍成一塊矩形的菜地,(如圖所示)
(1)用長度x表示菜地的面積S;
(2)當(dāng)矩形的長、寬各為多少時(shí),這塊菜地的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,a,b,c分別是角A,B,C的對邊,且$({2b-\sqrt{2}c})cosA=\sqrt{2}acosC$.
(1)求角A的大小;
(2)若a=1,$cosB=\frac{4}{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.給出下列命題
①若奇函數(shù)f(x)對定義域R內(nèi)任意x都有f(x)=f(2-x),則f(x)為周期函數(shù)
②根據(jù)表中數(shù)據(jù),可以判定方程ex-x-6=0的一個(gè)根所在的區(qū)間為(1,2)
x-10123
ex0.3712.727.3920.09
x+656789
③已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí)f(x)=ex-ax,若f(x)在R上有且只有4個(gè)零點(diǎn),則a的取值范圍為(e,+∞)
④實(shí)數(shù)a在區(qū)間(1,4)上隨機(jī)取值時(shí),函數(shù)f(x)=-x2+ax+2在區(qū)間(1,+∞)上是單調(diào)減函數(shù)的概率為$\frac{1}{3}$,其中真命題是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓Cl的方程為$\frac{{x}^{2}}{{4}^{2}}$+$\frac{{y}^{2}}{{3}^{2}}$=1,橢圓C2的短軸為C1的長軸且離心率為$\frac{\sqrt{3}}{2}$.
(I)求橢圓C2的方程;
(Ⅱ)如圖,M、N分別為直線l與橢圓Cl、C2的一個(gè)交點(diǎn),P為橢圓C2與y軸的交點(diǎn),△PON面積為△POM面積的2倍,若直線l的方程為y=kx(k>0),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{2x-3≥y}\\{y≤4-x}\\{x-2y-4≤0}\end{array}}\right.$,則z=2x+y的最大值為8.

查看答案和解析>>

同步練習(xí)冊答案