6.求數(shù)列{$\frac{3n-1}{{2}^{n}}$}的前n項和Tn

分析 利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:數(shù)列{$\frac{3n-1}{{2}^{n}}$}的前n項和Tn=$2×\frac{1}{2}$+5×$(\frac{1}{2})^{2}$+…+(3n-1)×$(\frac{1}{2})^{n}$,
$\frac{1}{2}{T}_{n}$=$2×(\frac{1}{2})^{2}$+5×$(\frac{1}{2})^{3}$+…+(3n-4)×$(\frac{1}{2})^{n}$+(3n-1)×$(\frac{1}{2})^{n+1}$,
∴$\frac{1}{2}$Tn=1+3$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+$…+$\frac{1}{{2}^{n}})$-(3n-1)×$(\frac{1}{2})^{n+1}$=3×$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{1}{2}$-(3n-1)×$(\frac{1}{2})^{n+1}$,
∴Tn=5-$\frac{3n+5}{{2}^{n}}$.

點評 本題考查了“錯位相減法”與等比數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在數(shù)列{an}中,a1=2,an+1=an+2n(n∈N*),則數(shù)列{an}的通項公式是( 。
A.${a_n}={2^n}$B.${a_n}={3^{n-1}}$C.${a_n}={2^{n-2}}$D.${a_n}={3^{n-2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(1,3),$\overrightarrow$=(2,λ),若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角,則λ的取值范圍為(-$\frac{2}{3}$,6)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在極坐標系中,已知點(4,$\frac{π}{4}$),直線為ρsin(θ+$\frac{π}{4}$)=1.
(1)求點(4,$\frac{π}{4}$)的直角坐標系下的坐標與直線的普通方程;
(2)求點(4,$\frac{π}{4}$)到直線ρsin(θ+$\frac{π}{4}$)=1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙兩人在相同條件下各射擊10次,每次命中的環(huán)數(shù)如表:
86786591047
6778678795
(1)分別計算以上兩組數(shù)據(jù)的平均數(shù);
(2)分別計算以上兩組數(shù)據(jù)的方差;
(3)根據(jù)計算的結(jié)果,對甲乙兩人的射擊成績作出評價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{2}{3}$,a=$\sqrt{5}$,c=2,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)滿足f(x)+2f($\frac{1}{x}$)=2x+1,則f(2)=(  )
A.-$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{8}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知二次函數(shù)y=f(x)滿足:f(0)=0且f(x+1)=f(x)+2x+5,求f(x)的解析式;
(2)若f(-2x)+2f(2x)=3x-2,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知角α的正弦值與余弦值均為負值,且cos(75°+α)=$\frac{1}{3}$,則cos(105°-α)+sin(α-105°)=$\frac{2\sqrt{2}-1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案