如圖,已知正方體的棱長為2,E、F分別是、的中點(diǎn),過、E、F作平面交于G.
(l)求證:EG∥;
(2)求二面角的余弦值;
(3)求正方體被平面所截得的幾何體的體積.
(1)詳見試題解析(2) (3)
解析試題分析:(1)兩平行平面都與第三個(gè)平面相交,則交線平行;
(2)以為原點(diǎn)分別以為軸,建立空間直角坐標(biāo)系,平面的法向量為,求出平面的法向量,利用空間向量的夾角公式求二面角的余弦值.
(3)所求幾何體是由正方體截去一個(gè)三棱臺(tái)而得到, 所以,.
(1)證明:在正方體中,因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/10/c/agff5.png" style="vertical-align:middle;" />平面,
平面平面平面平面
(2)解:如圖,以為原點(diǎn)分別以為軸,建立空間直角坐標(biāo)系,
則有
設(shè)平面的法向量為則由和得
取得
又平面的法向量為
故
所以截面與底面所成二面角的余弦值為
(3)解:設(shè)所截幾何體的體積為
與相似,
故
考點(diǎn):1、平面與平面平行的性質(zhì);2、空間直角坐標(biāo)系;3、向量夾角公式;4、組合體的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中, D、E分別是AB,BB1的中點(diǎn).
(1)證明: BC1//平面A1CD;
(2)設(shè)AA1="AC=CB=1," AB=,求三棱錐D一A1CE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .
(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),是AC的中點(diǎn),已知,.
(1)求證:AC⊥平面VOD;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC=BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長為2的正三角形,BB1=求三棱錐B1-A1DC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐B-DEG的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com