【題目】設(shè)集合為函數(shù)的定義域,集合為不等式的解集.
(1)若,求;
(2)若,求實(shí)數(shù)的取值范圍.
【答案】(1) (2)
【解析】試題分析:
(1)利用題意首先求得集合A,B,然后求解交集可得A∩B= [1,2)
(2)首先求得,然后結(jié)合子集的定義得到關(guān)于實(shí)數(shù)a的不等式,求解不等式可得實(shí)數(shù)的取值范圍是.
試題解析:
(1)由函數(shù)有意義得,即(1+x)(2-x)>0,
解得-1<x<2,即A={x|-1<x<2}.
解不等式(x-1)(x+2)≥0得x≤-2或x≥1,即B={x|x≤-2或x≥1}.
∴A∩B={x|1≤x<2}=[1,2).
(2)由(1)知RA={x|x≤-1或x≥2},
解不等式(ax-1)(x+2)≥0得x≤-2或x≥,即B={x|x≤-2或x≥},
∵BRA,∴≥2,解得0<a≤.
即實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有學(xué)生 人,其中一年級(jí) 人,二、三年級(jí)各 人,現(xiàn)要用抽樣方法抽取 人形成樣本,將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為 , , , ,如果抽得號(hào)碼有下列四種情況:
①, , , , , , , , , ;
②, , , , , , , , , ;
③, , , , , , , , , ;
④, , , , , , , , , ;
其中可能是由分層抽樣得到,而不可能是由系統(tǒng)抽樣得到的一組號(hào)碼為
A. ①② B. ②③ C. ①③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是公差為的等差數(shù)列,偶數(shù)項(xiàng)是公差為的等差數(shù)列, 是數(shù)列的前項(xiàng)和,
(1)若,求;
(2)已知,且對(duì)任意的,有恒成立,求證:數(shù)列是等差數(shù)列;
(3)若,且存在正整數(shù),使得,求當(dāng)最大時(shí),數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若是函數(shù)的極值點(diǎn),求的值;
(Ⅱ)若在區(qū)間上單調(diào)遞增,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失(單位:元),空氣質(zhì)量指數(shù)為.在區(qū)間對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.
(1)試寫出的表達(dá)式;
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過600元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷
能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.82 |
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,向量,,且與共線.
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì)任意,將數(shù)列中落入?yún)^(qū)間內(nèi)的項(xiàng)的個(gè)數(shù)記為,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數(shù)y=f(x)-g(x)在區(qū)間[a,b]上至少有一個(gè)零點(diǎn),則稱f(x)和g(x)在[a,b]上具有關(guān)系G.
(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關(guān)系G,并說明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關(guān)系G,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(I)若,求函數(shù)在點(diǎn)處的切線方程;
(II)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(III)令,(是自然對(duì)數(shù)的底數(shù)),求當(dāng)實(shí)數(shù)等于多少時(shí),可以使函數(shù)取得最小值為3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com