【題目】已知數(shù)列的前項(xiàng)和為,向量,且共線.

(1)求數(shù)列的通項(xiàng)公式;

(2)對任意,將數(shù)列中落入?yún)^(qū)間內(nèi)的項(xiàng)的個數(shù)記為,求數(shù)列的前項(xiàng)和.

【答案】1an=9n-8(nN*);2.

【解析】

試題分析:(1)直接由平面向量共線定理即可得出的表達(dá)式,并運(yùn)用即可求出數(shù)列的通項(xiàng)公式;(2)將題意轉(zhuǎn)化為數(shù)學(xué)語言即9m+8<9n92m+8,進(jìn)而得出數(shù)列的通項(xiàng)公式,最后運(yùn)用分組求和法求出即可得出所求答案.

試題解析:(1)共線, ,

所以an=9n-8(nN*).

(2)對mN*,若9man92m,則9m+8<9n92m+8.

因此9m-1+1n92m-1.故得bm92m-19m-1.

于是Tmb1b2b3bm=(9+9392m-1)-(1+9+9m-1)=

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的前n項(xiàng)和為Sn,已知a1=2,且4S1,3S22S3成等差數(shù)列.

)求數(shù)列的通項(xiàng)公式;

)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖.

(1)求;

(2)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;

(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn),如圖,若拋物線軸的交點(diǎn)為,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)設(shè),為拋物線上的一動點(diǎn),過點(diǎn)作拋物線的切線交橢圓于點(diǎn)兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合為函數(shù)的定義域,集合為不等式的解集.

(1)若,求

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產(chǎn)品.

(1)求的值;

(2)若該產(chǎn)品的成本價格為萬元/噸,當(dāng)銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點(diǎn).

(1)求證: 平面;

(2)設(shè)的中點(diǎn), 的重心,求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次研究性學(xué)習(xí)有整理數(shù)據(jù)、撰寫報(bào)告兩項(xiàng)任務(wù),兩項(xiàng)任務(wù)無先后順序,每項(xiàng)任務(wù)的完成相互獨(dú)立,互不影響某班研究性學(xué)習(xí)有甲、乙兩個小組根據(jù)以往資料統(tǒng)計(jì),甲小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為,乙小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為若在一次研究性學(xué)習(xí)中,兩個小組完成任務(wù)項(xiàng)數(shù)相等而且兩個小組完成任務(wù)數(shù)都不少于一項(xiàng),則稱該班為和諧研究班

1,求在一次研究性學(xué)習(xí)中,已知甲小組完成兩項(xiàng)任務(wù)的條件下,該班榮獲和諧研究班的概率;

2設(shè)在完成4次研究性學(xué)習(xí)中該班獲得和諧研究班的次數(shù)為,若的數(shù)學(xué)期望,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中是實(shí)數(shù)設(shè)為該函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為,且

1求的單調(diào)區(qū)間和極值;

2,函數(shù)的圖像在點(diǎn)處的切線互相垂直,求的最大值

查看答案和解析>>

同步練習(xí)冊答案