【題目】在底面為正三角形的直三棱柱中,已知AB=AA1,點M的中點.

1)求證:

2)點P的中點,求二面角P-AB-M的余弦值.

【答案】1)證明見解析(2

【解析】

(1)取的中點,連接,,由平面平面可得,利用平面圖形的性質(zhì)可證得,進而得證;

2)取的中點為原點,建立空間直角坐標系,,分別求得平面和平面的法向量,進而利用余弦定理求解即可.

1)證明:的中點,連接,,

又平面平面,

所以平面,所以,

因為,是等邊三角形,

所以,,

所以,所以,

,

所以平面,所以.

2)取的中點為原點,如圖建立空間直角坐標系,

,,,,,

所以,,,

設平面的法向量,平面的法向量,

,,,,,,

,,,,,

設所求的角為,,

由圖可知,所求的角為銳角,

所以所求角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高三(1)班在一次語文測試結束后,發(fā)現(xiàn)同學們在背誦內(nèi)容方面失分較為嚴重.為了提升背誦效果,班主任倡議大家在早、晚讀時間站起來大聲誦讀,為了解同學們對站起來大聲誦讀的態(tài)度,對全班50名同學進行調(diào)查,將調(diào)查結果進行整理后制成下表:

考試分數(shù)

頻數(shù)

5

10

15

5

10

5

贊成人數(shù)

4

6

9

3

6

4

1)欲使測試優(yōu)秀率為30%,則優(yōu)秀分數(shù)線應定為多少分?

2)依據(jù)第1問的結果及樣本數(shù)據(jù)研究是否贊成站起來大聲誦讀的態(tài)度與考試成績是否優(yōu)秀的關系,列出2×2列聯(lián)表,并判斷是否有90%的把握認為贊成與否的態(tài)度與成績是否優(yōu)秀有關系.

參考公式及數(shù)據(jù):,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓錐(其中為頂點,為底面圓心)的側面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標原點).

(1)試求拋物線的方程;

(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.

①求證:直線恒過定點;

②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(

A.向左平移個單位長度,縱坐標縮短到原來的,橫坐標不變

B.向左平移個單位長度,縱坐標伸長到原來的3倍橫坐標不變

C.向右平移個單位長度,縱坐標縮短到原來的,橫坐標不變

D.向右平移個單位長度,縱坐標伸長到原來的3倍,橫坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學研究成果,《周牌算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》等10部專著是了解我國古代數(shù)學的重要文獻.10部專著中有5部產(chǎn)生于魏晉南北朝時期.某中學擬從這10部專著中選擇2部作為數(shù)學文化課外閱讀教材則所選2部專著中至少有一部是魏晉南北朝時期的專著的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2.

1)設1箱零件人工檢驗總費用為元,求的分布列;

2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6.現(xiàn)有1000箱零件需要檢驗,以檢驗總費用的數(shù)學期望為依據(jù),在人工檢驗與機器檢驗中,應該選擇哪一個?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在極坐標系中,曲線C1是以C14,0)為圓心的半圓,曲線C2是以為圓心的圓,曲線C1、C2都過極點O

1)分別寫出半圓C1,C2的極坐標方程;

2)直線l與曲線C1,C2分別交于M、N兩點(異于極點O),PC2上的動點,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過橢圓的焦點,且橢圓的中心關于直線的對稱點的橫坐標為為橢圓的焦距).

1)求橢圓的方程;

2)是否存在過點,且交橢圓于點的直線,滿足.若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案