已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R,
(Ⅰ)當(dāng)a=時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍;
(Ⅲ)若對(duì)于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范圍.

解:(Ⅰ),
當(dāng)時(shí),,
令f′(x)=0,解得,
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:

所以f(x)在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).
(Ⅱ),顯然x=0不是方程的根,
為使f(x)僅在x=0處有極值,必須成立,
即有,解不等式,得,
這時(shí),f(0)=b是唯一極值;
因此滿足條件的a的取值范圍是。
(Ⅲ)由條件a∈[-2,2],可知,
從而恒成立,
當(dāng)x<0時(shí),f′(x)<0;當(dāng)x>0時(shí),f′(x)>0,
因此函數(shù)f(x)在[-1,1]上的最大值是f(1)與f(-1)兩者中的較大者,
為使對(duì)任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,
當(dāng)且僅當(dāng),即在a∈[-2,2]上恒成立,所以b≤-4,
因此滿足條件的b的取值范圍是

練習(xí)冊(cè)系列答案
  • 仁愛英語基礎(chǔ)訓(xùn)練系列答案
  • 0系列答案
  • 仁愛英語教材講解系列答案
  • 仁愛英語暑假補(bǔ)課專用教材系列答案
  • 仁愛英語英漢互動(dòng)講解系列答案
  • 仁愛英語同步閱讀與完形填空周周練系列答案
  • 拔尖特訓(xùn)系列答案
  • 課課練與單元測試系列答案
  • 世紀(jì)金榜小博士單元期末一卷通系列答案
  • 單元測試AB卷臺(tái)海出版社系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
    (1)求m的值,并確定f(x)的解析式;
    (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

    已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

    已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

    已知函數(shù)f(x)、g(x),下列說法正確的是( )
    A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
    B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
    C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
    D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

    查看答案和解析>>

    同步練習(xí)冊(cè)答案