5.巴蜀中學(xué)第七周將安排高二年級的5名學(xué)生會干部去食堂維持秩序,要求星期一到星期五每天只安排一人,每人只安排一天,其中甲同學(xué)不能安排在星期一,乙同學(xué)不能安排在星期五,丙同學(xué)不能和甲同學(xué)安排在相鄰的兩天,則滿足要求的不同安排方法有( 。┓N.
A.46B.62C.72D.96

分析 根據(jù)題意可以兩大類,第二類再分類四類,根據(jù)分類計數(shù)原理可得.

解答 解:若甲安排在星期五,丙從星期一到星期三選一天,剩下的三人任意安排,故有A31A33=18種,
若甲不安排在星期五,若丙安排在星期五,則甲排在星期二或星期三,其余三人任意排,有A21A33=12種,
若甲不安排在星期五,若丙安排在星期四,則甲排在星期二,再從其二人(不含乙)排在星期五,其余任意,有A21A22=4種,
若甲不安排在星期五,若丙安排在星期二,則甲排在星期四,再從其二人(不含乙)排在星期五,其余任意,有A21A22=4種,
若甲不安排在星期五,若丙安排在星期一,則甲排在星期三或星期四,再從其二人(不含乙)排在星期五,其余任意,有A21A21A22=8種,
根據(jù)分類計數(shù)原理可得共有18+12+4+4+8=46,
故選:A.

點評 本題考查了分類計數(shù)原理,關(guān)鍵是分類,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex,x∈R.
(1)設(shè)x>0,討論曲線y=$\frac{f(x)}{x^2}$與直線y=m公共點的個數(shù);
(2)設(shè)函數(shù)h(x)滿足x2h′(x)+2xh(x)=$\frac{f(x)}{x}$,h(2)=$\frac{f(2)}{8}$,試比較h(e)與$\frac{7}{8}$的大。╡2=7.389)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列數(shù)列{an}滿足an+1+an=4n,則a1=( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=x3+x-2在點P0處的切線平行于直線y=4x-4,則P0點的坐標(biāo)為( 。
A.(1,0)B.(-1,-4)C.(1,0)或(-1,-4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.y=xn在x=1處切線方程為y=-4x,則n的值為( 。
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2sinxcosx+2cos2x(x∈R).
(1)求函數(shù)f(x)的值域;
(2)在△ABC中,角A、B、C的對邊分另為a、b、c,且f(A)=2,b=2,$c=\sqrt{2}$,求△ABC的面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知正項等比數(shù)列{an},滿足a5+a4-a3-a2=9,則a6+a7的最小值為( 。
A.9B.18C.27D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,圓錐SO中,AB、CD為底面圓O的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=2,P為SB的中點.(1)求證:SA∥平面PCD;
(2)求三棱錐S-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),經(jīng)過點(1,e),其中e為橢圓的離心率,橢圓的上,下頂點與兩焦點構(gòu)成正方形.(1)求橢圓Γ的方程;
(2)若不經(jīng)過原點的直線l與橢圓Γ相交于A,B兩點,且l與x軸不垂直,OA,OB(O為坐標(biāo)原點)的斜率之積為-$\frac{1}{2}$.求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案