14.已知集合M={y|y=x2-1,x∈R},N={x|y=$\sqrt{4-{x^2}}$},則M∩N=( 。
A.[-1,2]B.[-1,+∞)C.[2,+∞)D.

分析 求出M中y的范圍確定出M,求出N中x的范圍確定出N,找出兩集合的交集即可.

解答 解:由M中y=x2-1≥-1,得到M=[-1,+∞),
由N中y=$\sqrt{4-{x}^{2}}$,得到4-x2≥0,
解得:-2≤x≤2,即N=[-2,2],
則M∩N=[-1,2],
故選:A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知不等式組$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,構(gòu)成平面區(qū)域Ω(其中x,y是變量),若目標(biāo)函數(shù)z=ax+2y(a≠0)的最小值為-4,則實數(shù)a的值為( 。
A.-$\frac{4}{3}$B.2C.4D.2或-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=log2(x2-ax+1)的值域為R,則a的取值范圍為(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的函數(shù)f(x)=$\frac{2t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+x}{2{x}^{2}+cosx}$(t≠0)的最大值為a,最小值為b,且a+b=2016,則實數(shù)t的值為1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在其定義域上為增函數(shù)的是( 。
A.y=x2B.y=e-xC.y=x-sinxD.y=-$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|3<x<10},B={x|x2-9x+14<0},C={x|5-m<x<2m}.
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若x∈C是x∈(A∩B)的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow a$=(cosθ,sinθ),$\overrightarrow b$=(-1,$\sqrt{3}$),則|$\overrightarrow a$-$2\overrightarrow b$|的最大值和最小值分別是( 。
A.25,9B.5,3C.16,0D.16,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=4sin3x-sinx+2(sin$\frac{x}{2}$-cos$\frac{x}{2}$)2的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=loga|ax2-x|在[1,2]上單調(diào),則實數(shù)a的取值范圍是(0,$\frac{1}{4}$]∪{$\frac{1}{2}$}∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案