分析 (1)數(shù)列{$\frac{{a}_{n}}{2n-1}$}的前n項(xiàng)和為Sn,Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4,即Sn=4-$\frac{{4}^{n+1}}{{5}^{n}}$.n≥2時(shí),$\frac{{a}_{n}}{2n-1}$=Sn-Sn-1,可得:an.n=1時(shí)a1=$\frac{4}{5}$,對于上式也成立.可得an
(2)利用錯(cuò)位相減法、等比數(shù)列的求和公式即可得出.
解答 解:(1)∵數(shù)列{$\frac{{a}_{n}}{2n-1}$}的前n項(xiàng)和為Sn,Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4,即Sn=4-$\frac{{4}^{n+1}}{{5}^{n}}$.
∴n≥2時(shí),$\frac{{a}_{n}}{2n-1}$=Sn-Sn-1=4-$\frac{{4}^{n+1}}{{5}^{n}}$-$(4-\frac{{4}^{n}}{{5}^{n-1}})$,
可得:an=(2n-1)•$(\frac{4}{5})^{n}$.
n=1時(shí)a1=4-$\frac{{4}^{2}}{5}$=$\frac{4}{5}$,對于上式也成立.
∴an=(2n-1)•$(\frac{4}{5})^{n}$,n∈N*;
(2)數(shù)列{an}的前n項(xiàng)和Tn=$\frac{4}{5}$+3×$(\frac{4}{5})^{2}$+5×$(\frac{4}{5})^{3}$+…+(2n-1)•$(\frac{4}{5})^{n}$.
∴$\frac{4}{5}$Tn=$(\frac{4}{5})^{2}$+3×$(\frac{4}{5})^{3}$+…+(2n-3)•$(\frac{4}{5})^{n}$+(2n-1)$•(\frac{4}{5})^{n+1}$.
∴$\frac{1}{5}$Tn=$\frac{4}{5}$+2×$[(\frac{4}{5})^{2}+(\frac{4}{5})^{3}$+…+$(\frac{4}{5})^{n}]$-(2n-1)$•(\frac{4}{5})^{n+1}$=$\frac{4}{5}$+2×$\frac{\frac{16}{25}[1-(\frac{4}{5})^{n-1}]}{1-\frac{4}{5}}$-(2n-1)$•(\frac{4}{5})^{n+1}$.
可得Tn=36-(8n+36)×$(\frac{4}{5})^{n}$.
點(diǎn)評 本題考查了數(shù)列遞推公式、錯(cuò)位相減法、等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -250 | B. | 250 | C. | -25 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 32 | C. | 64 | D. | 128 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行四邊形 | B. | 菱形 | C. | 矩形 | D. | 等腰梯形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$或$\frac{5π}{6}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|$\frac{1}{2}$<x<2} | B. | {x|-1<x<0或$\frac{1}{2}$<x<2} | C. | {x|-1<x<$\frac{1}{2}$} | D. | {x|0<x<$\frac{1}{2}$或1<x<2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com