7.在四邊形ABCD中,若$\overrightarrow{DC}=\frac{2}{5}\overrightarrow{AB}$,且|$\overrightarrow{AD}|=|\overrightarrow{BC}|$,則這個四邊形是( 。
A.平行四邊形B.菱形C.矩形D.等腰梯形

分析 利用向量的共線、等腰梯形的定義即可判斷出結(jié)論.

解答 解:∵$\overrightarrow{DC}=\frac{2}{5}\overrightarrow{AB}$,且|$\overrightarrow{AD}$|=$|\overrightarrow{BC}|$,
∴DC∥AB,DC≠AB,AD=BC.
則這個四邊形是等腰梯形.
故選:D.

點評 本題考查了向量的共線、等腰梯形的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若數(shù)列{an}為等差數(shù)列,Sn為其前n項和,且a1=2a3-3,則S9=( 。
A.25B.27C.50D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,$|{\overrightarrow{AB}+\overrightarrow{AC}}|=\sqrt{3}|{\overrightarrow{AB}-\overrightarrow{AC}}|$,$|{\overrightarrow{AB}}|=|{\overrightarrow{AC}}|=3$,則$\overrightarrow{CB}•\overrightarrow{CA}$的值為( 。
A.3B.-3C.$-\frac{9}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是線段AB的中點.
(Ⅰ)求證:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項和Sn滿足Sn=2(bn-1),且a2=b1-1,a5=b3-1.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{$\frac{{a}_{n}}{2n-1}$}的前n項和為Sn,若Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=ax3+3x2+2,若f′(-1)=6,則a的值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點P(1,1)且傾斜角為45°的直線被圓(x-2)2+(y-1)2=2所截的弦長是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于x,y的不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{x+m<0}\\{y-m>0}\end{array}\right.$,表示的平面區(qū)域為D,若存在點P(x0,y0)∈D,滿足x0-2y0=2,則實數(shù)m的取值范圍是m<-$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案