觀察下列等式:
 




照此規(guī)律, 第n個(gè)等式可為       .
觀察上式等號(hào)左邊的規(guī)律發(fā)現(xiàn):左邊的項(xiàng)數(shù)依次加1,故第n個(gè)等式左邊有n項(xiàng),每項(xiàng)所含的底數(shù)的絕對(duì)值也增加1,依次為指數(shù)都是,符號(hào)成正負(fù)交替出現(xiàn)可以用表示;等式的右邊數(shù)的絕對(duì)值是左邊項(xiàng)的底數(shù)的和,故等式的右邊可以表示為,所以第n個(gè)式子可為:.解題的關(guān)鍵在于:1.通過(guò)四個(gè)已知等式的比較發(fā)現(xiàn)隱藏在等式中的規(guī)律; 2.符號(hào)成正負(fù)交替出現(xiàn)可以用表示;3.表達(dá)的完整性,不要遺漏了
【考點(diǎn)定位】本題考查觀察和歸納推理能力.屬于中等題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

實(shí)驗(yàn)中學(xué)“數(shù)學(xué)王子”張小明在自習(xí)課上,對(duì)正整數(shù)1,2,3,4, 按如下形式排成數(shù)陣好朋友王大安問(wèn)他“由上而下第20行中從左到右的第三個(gè)數(shù)是多少”張小明自上而下逐個(gè)排了兩節(jié)課,終于找到了這個(gè)數(shù),聰明的你一定知道這個(gè)數(shù)是(      )   
                                  
A.190B.191C.192D.193

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

把正奇數(shù)數(shù)列按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),第四個(gè)括號(hào)一個(gè)數(shù),第五個(gè)括號(hào)兩個(gè)數(shù),第六個(gè)括號(hào)三個(gè)數(shù), .依次劃分為,,,,, .則第個(gè)括號(hào)內(nèi)各數(shù)之和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:,.
由以上兩式,可以類比得到:_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是                          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),用反證法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)關(guān)于正整數(shù)的命題滿足“若時(shí)命題成立,則時(shí)命題也成立”.有下列判斷:
(1)當(dāng)時(shí)命題不成立,則時(shí)命題不成立;
(2)當(dāng)時(shí)命題不成立,則時(shí)命題不成立;
(3)當(dāng)時(shí)命題成立,則時(shí)命題成立;
(4)當(dāng)時(shí)命題成立,則時(shí)命題成立.
其中正確判斷的序號(hào)是        .(寫(xiě)出所有正確判斷的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表達(dá)式為(  )
A.f(x)=B.f(x)=
C.f(x)=D.f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}…,依它的10項(xiàng)的規(guī)律,則a99+a100的值為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案