【題目】正項等比數(shù)列{an}中,存在兩項am、an使得=4a1 , 且a6=a5+2a4 , 則的最小值是( 。
A.
B.2
C.
D.

【答案】A
【解析】解:在等比數(shù)列中,∵a6=a5+2a4 ,

即q2﹣q﹣2=0,
解得q=2或q=﹣1(舍去),
=4a1 ,

即2m+n﹣2=16=24 ,
∴m+n﹣2=4,即m+n=6,
,

當且僅當,即n=2m時取等號.
故選:A.
【考點精析】利用基本不等式在最值問題中的應用和等比數(shù)列的基本性質(zhì)對題目進行判斷即可得到答案,需要熟知用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”;{an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn{}的前n項和,則的最小值為________

【答案】4

【解析】

成等比數(shù)列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分離常數(shù)法化簡后,利用基本不等式求出式子的最小值.

成等比數(shù)列,a1=1,

=

∴(1+2d)2=1+12d,d≠0,

解得d=2.

∴an=1+2(n﹣1)=2n﹣1.

Sn=n+×2=n2

==n+1+﹣2≥2﹣2=4,

當且僅當n+1=時取等號,此時n=2,且取到最小值4,

故答案為:4.

【點睛】

本題考查了等差數(shù)列的通項公式、前n項和公式,等比中項的性質(zhì),基本不等式求最值,在利用基本不等式求最值時,要特別注意拆、拼、湊等技巧,使其滿足基本不等式中”(即條件要求中字母為正數(shù))、“”(不等式的另一邊必須為定值)、“”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.

型】填空
結(jié)束】
17

【題目】是公比為正數(shù)的等比數(shù)列,,

(1)的通項公式;

(2)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCDEPC的中點.

.求證:(PA∥平面BDE;()平面PAC⊥平面BDE;(III)PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準備在上的一點的正北方向的處建設一倉庫,設,并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站(其中上),現(xiàn)從倉庫和中轉(zhuǎn)站分別修兩條道路,已知,且

(1)求關于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元,兩條道路造價為30萬元,問:取何值時,該公司建設中轉(zhuǎn)站圍墻和兩條道路總造價最低.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油(2+ )升,司機的工資是每小時14元.
(1)求這次行車總費用y關于x的表達式;
(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“紅燈停,綠燈行”,這是我們每個人都應該也必須遵守的交通規(guī)則.湊齊一撥人就過馬路﹣﹣不看交通信號燈、隨意穿行交叉路口的“中國式過馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國式過馬路”是衡量這座城市文明程度的重要指標.某調(diào)查機構(gòu)為了了解路人對“中國式過馬路”的態(tài)度,從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

男性

女性

合計

反感

10

不反感

8

合計

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是

(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?

(2)若從這30人中的女性路人中隨機抽取2人參加一項活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列及其數(shù)學期望.

附:,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于向量a,b,e及實數(shù)x,y,x1,x2,,給出下列四個條件:
; ②
唯一; ④
其中能使a與b共線的是 ( )
A.①②
B.②④
C.①③
D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩校各有3名教師報名支教,期中甲校2男1女,乙校1男2女.

(1)若從甲校和乙校報名的教師中各任選1名,寫出所有可能的結(jié)果,并求選出的2名教師性別相同的概率;

(2)若從報名的6名教師中任選2名,寫出所有可能的結(jié)果,并求選出的2名教師來自同一學校的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的反函數(shù)為 ,等比數(shù)列{an}的公比為2,若 ,則 =(
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015

查看答案和解析>>

同步練習冊答案