已知a>0,a≠1,設(shè)p:函數(shù)y=logax在(0,+∞)上單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).若“p且q”為假,“﹁q”為假,求a的取值范圍.
∵函數(shù)y=logax在(0,+∞)上單調(diào)遞減,
∴0<a<1,
即p:0<a<1,
∵曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn)
∴△=(2a-3)2-4>0,
解得a>
5
2
或a<
1
2

即q:a>
5
2
或a<
1
2

∵“p且q”為假,“﹁q”為假,
∴p假q真,
a>1
a>
5
2
或a<
1
2

∴a>
5
2

即a的取值范圍是a>
5
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)命題P:|m-5|≤3;命題Q:函數(shù)f(x)=3x2+2mx+m+
4
3
有兩個(gè)不同的零點(diǎn).求使命題“P或Q”為真命題的實(shí)數(shù)M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題p:“?x∈[1,2],x2-a≥0”;命題q:“?x∈R,x2+2ax+2a≤0”,若命題“p∨q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

命題“在平面內(nèi)的一條直線,如果和穿過(guò)這個(gè)平面的一條斜線在這個(gè)平面內(nèi)的射影垂直,那么它也和這條斜線垂直.”的逆命題是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)命題p:?x0∈R,x02-2ax0+2-a=0,命題q:?x∈[1,+∞),a≤log16(3x+1),如果命題p∨q為真命題,命題p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a>0,命題p:?x>0,x+
a
x
≥2恒成立;命題q:?k∈R,直線kx-y+2=0與橢圓x2+
y2
a2
=1恒有公共點(diǎn).問(wèn):是否存在正實(shí)數(shù)a,使得p∨q為真命題,p∧q為假命題?若存在,請(qǐng)求出a的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題p:“方程x2+y2-x+y+m=0對(duì)應(yīng)的曲線是圓”,命題q:“雙曲線mx2-y2=1的兩條漸近線的夾角為60°”.若這兩個(gè)命題中只有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若命題P:“若x+y=0,則x,y互為相反數(shù)”命題P的否命題為Q,命題Q的逆命題為R,則R是P的逆命題的( 。
A.逆命題B.否命題C.逆否命題D.原命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

”是“函數(shù)為奇函數(shù)”的      條件.
(從“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

同步練習(xí)冊(cè)答案