1.2x=7y=196,則$\frac{1}{x}+\frac{1}{y}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

分析 化指數(shù)式為對數(shù)式,代入$\frac{1}{x}+\frac{1}{y}$后由對數(shù)的運算性質(zhì)化簡求值.

解答 解:由2x=7y=196,
得x=log2196,y=log7196.
∴$\frac{1}{x}$+$\frac{1}{y}$=$\frac{1}{lo{g}_{2}196}$+$\frac{1}{lo{g}_{7}196}$
=log1962+log1967=log19614=$\frac{1}{2}$log196196=$\frac{1}{2}$,
故選:B.

點評 本題考查了指數(shù)式與對數(shù)式的互化,考查了對數(shù)的運算性質(zhì),是基礎(chǔ)的運算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.近年來大氣污染防治工作得到各級部門的重視,某企業(yè)現(xiàn)有設(shè)備下每日生產(chǎn)總成本y(單位:萬元)與日產(chǎn)量x(單位:噸)之間的函數(shù)關(guān)系式為y=2x2+(15-4k)x+120k+8,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設(shè)備,每噸產(chǎn)品除塵費用為k萬元,除塵后當日產(chǎn)量x=1時,總成本y=142.
(1)求k的值;
(2)若每噸產(chǎn)品出廠價為48萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x∈N*|x≤6},B={2,4},則∁AB=( 。
A.{2,4}B.{0,1,3,5}C.{1,3,5,6}D.{x∈N*|x≤6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinx($\sqrt{3}$cosx-sinx)+1,x∈R.
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知l為直線,α,β為兩個不同平面,若α∥β,l∥α,則l與β的位置關(guān)系為l∥β或l?β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.x為實數(shù),[x]表示不超過x的最大整數(shù),如[1.2]=1,[-1.2]=-2;則函數(shù)f(x)=[x[x]]在(-1,1)上( 。
A.是奇函數(shù)B.是偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在R上的奇函數(shù)f(x),當x∈(-∞,0)時,f(x)+xf'(x)<0恒成立,若a=3f(3),b=(logπe)f(logπe),c=-2f(-2),則a,b,c的大小關(guān)系為b<c<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某班有學(xué)生48人,現(xiàn)用系統(tǒng)抽樣的方法,抽取一個容量為6的樣本,已知座位號分別為6,14,30,38,46的同學(xué)都在樣本中,那么樣本中另一位同學(xué)的座位號應(yīng)該是22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,A=60°,AB=1,AC=2,則S△ABC的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案