5.今年我校高中部在全市初三學生中進行自主招生試點,通過面試招錄35名優(yōu)秀初三畢業(yè)生,第一輪面試共有從易到難的A、B、C、D四個問題,規(guī)則如下:
(1)每位參加者都必須按問題A、B、C、D順序作答,直至答題結束;
(2)每位參加者計分器的初始分數(shù)都是100分,答對問題A加10分,答對問題B加20分,答對問題C加30分,答對問題D加60分,答錯任意一題減20分;
(3)每回答一題,計分器顯示累計分數(shù),當累計分數(shù)小于80分時,答題結束,直接淘汰出局;
(4)當累計分數(shù)大于或等于140分時,答題結束,直接進入下一輪;
(5)當答完四題,累計分數(shù)仍不足140分時,答題結束,淘汰出局.
現(xiàn)有某學生甲對問題A、B、C、D答對的概率分別為$\frac{3}{4}$、$\frac{1}{2}$、$\frac{1}{3}$、$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.
(Ⅰ)求甲同學能進入下一輪的概率;
(Ⅱ)用ξ表示甲同學本輪答題結束時答題的個數(shù),求ξ的分布列和數(shù)學期望(均值).

分析 (Ⅰ)設A、B、C、D分別表示第1、2、3、4個問題用Mi(i=1,2,3,4)表示甲同學第i個問題回答正確,記“甲同學進入下一輪”為事件K,由$P(K)=P({M_1}{M_2}{M_3}+\overline{M_1}{M_2}{M_3}{M_4}+{M_1}\overline{M_2}{M_3}{M_4}+{M_1}{M_2}\overline{M_3}{M_4}+\overline{M_1}{M_2}\overline{M_3}{M_4})$,能求出甲同學能進入下一輪的概率.
(Ⅱ)隨機變量ξ的取值為ξ=2,3,4,分別求出相應的概率,由此能求出隨機變量ξ的分布列和甲同學答題個數(shù)的數(shù)學期望.

解答 解:(Ⅰ)設A、B、C、D分別表示第1、2、3、4個問題
用Mi(i=1,2,3,4)表示甲同學第i個問題回答正確
用${\overline M_i}(i=1,2,3,4)$表示甲同學第i個問題回答錯誤
由題意得$P({M_1})=\frac{3}{4}$、$P({M_2})=\frac{1}{2}$、$P({M_3})=\frac{1}{3}$、$P({M_4})=\frac{1}{4}$,(2分)
記“甲同學進入下一輪”為事件K,
則$P(K)=P({M_1}{M_2}{M_3}+\overline{M_1}{M_2}{M_3}{M_4}+{M_1}\overline{M_2}{M_3}{M_4}+{M_1}{M_2}\overline{M_3}{M_4}+\overline{M_1}{M_2}\overline{M_3}{M_4})$
=$\frac{3}{4}×\frac{1}{2}×\frac{1}{3}+\frac{1}{4}×\frac{1}{2}×\frac{1}{3}×\frac{1}{4}+\frac{3}{4}×\frac{1}{2}×\frac{1}{3}×\frac{1}{4}+\frac{3}{4}×\frac{1}{2}×\frac{2}{3}×\frac{1}{4}+\frac{1}{4}×\frac{1}{2}×\frac{2}{3}×\frac{1}{4}$=$\frac{1}{4}$,
∴甲同學能進入下一輪的概率為$\frac{1}{4}$.(6分)
(Ⅱ)隨機變量ξ的取值為ξ=2,3,4,(7分)
ξ=2表示回答兩道題都錯,淘汰出局,$P(ξ=2)=\frac{1}{4}×\frac{1}{2}=\frac{1}{8}$,(9分)
ξ=3表示回答三道題答題結束,包括M1M2M3,${M_1}\overline{M_2}\overline{M_3}$,
∴$P(ξ=3)=\frac{3}{4}×\frac{1}{2}×\frac{1}{3}+\frac{3}{4}×\frac{1}{2}×\frac{2}{3}=\frac{3}{8}$,(11分)
$P(ξ=4)=1-P(ξ=2)-P(ξ=3)=\frac{1}{2}$,(12分)
則隨機變量ξ的分布列為:

ξ234
P$\frac{1}{8}$$\frac{3}{8}$$\frac{1}{2}$
$E(ξ)=2×\frac{1}{8}+3×\frac{3}{8}+4×\frac{1}{2}=\frac{27}{8}$
即甲同學答題個數(shù)的數(shù)學期望為$\frac{27}{8}$.(14分)

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意相互獨立事件概率乘法公式和互斥事件概率加法公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(x,-2)$\overrightarrow{c}$=(-1,y),若$\overrightarrow{a}⊥\overrightarrow$且$\overrightarrow{a}$∥$\overrightarrow{c}$,則x+y=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,三角形ABC是邊長為4的正三角形,PA⊥底面ABC,$PA=\sqrt{7}$,點D是BC的中點,點E在AC上,且DE⊥AC.
(1)證明:平面PDE⊥平面PAC;
(2)求三棱錐C-PDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.向量$\overrightarrow{a}$=(m-2,m+3),$\overrightarrow$=(2m+1,m-2),若$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則m的取值范圍是(2,+∞∪(-∞,$\frac{-11-5\sqrt{5}}{2}$ )∪( $\frac{-11+5\sqrt{5}}{2}$,-$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設△ABC的內角A、B、C的對邊分別為a,b,c,3c=8a.
(1)若cosC=$\frac{2\sqrt{2}}{3}$,求sinA;
(2)若B=$\frac{π}{3}$,且△ABC的面積為6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+b(a>0且a≠1)的圖象經(jīng)過點(2,0),(0,-2).
(1)求a和b的值;
(2)求當x∈[2,4]時,函數(shù)y=f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復數(shù)z1=i,z2=3-2i,則復數(shù)$\frac{z_2}{z_1}$在復平面內對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個交點,它們之間的距離為6,二次函數(shù)圖象的對稱軸方程為x=2,且f(x)有最小值為-9,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知拋物線x2=4y的焦點F和點A(-1,6),P為拋物線上一點,則|PA|+|PF|的最小值是7.

查看答案和解析>>

同步練習冊答案