Processing math: 100%
12.某市有中型水庫1座,小型水庫3座,當(dāng)水庫的水位超過警戒水位時(shí)就需要泄洪.氣象部門預(yù)計(jì),今年夏季雨水偏多,中型水庫需要泄洪的概率為25,小弄水庫需要泄洪的概率為12,假設(shè)每座水庫是否泄洪相互獨(dú)立.
(1)求至少有一座水庫需要泄洪的概率;
(2)設(shè)1座中型水庫泄洪造成的損失量為2個(gè)單位,1座小型水庫泄洪造成的損失量為1個(gè)單位,設(shè)ξ表示這4座水庫泄洪所造成的損失量之和,求ξ的分布列及數(shù)學(xué)期望.

分析 (1)利用對(duì)立事件概率計(jì)算公式能求出至少有一座水庫需要泄洪的概率.
(2)ξ的可能取值為0,1,2,3,4,5.分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)至少有一座水庫需要泄洪的概率是1-(1-25)×(1-123=3740.…(3分)
(2)ξ的可能取值為0,1,2,3,4,5.
P(ξ=0)=(1-25)×(1-123=340
P(ξ=1)=(1-25)×C13×12×1122=940
P(ξ=2)=25×1123+125×C23×122×(1-12)=1140,
P(ξ=3)=25×C13×12×1122+125×123=940,
P(ξ=4)=25×C23×122×112=320,
P(ξ=5)=25×123=120
故ξ的分布列為:

ξ012345
P3409401140940320120
故Eξ=0×340+1×940+2×1140+3×940+4×320+5×120=2310.…(12分)

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意對(duì)立事件概率公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i為虛數(shù)單位,則(\frac{1+i}{1-i}}2016=( �。�
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知“?x∈R,ax2+2ax+1≥0”為真命題,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為28π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數(shù)f(x)=x2,g(x)=2elnx,則f(x)和g(x)之間的“隔離直線”的方程為y=2exe

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex-ax,x∈R.
(1)當(dāng)a=2時(shí),求曲線f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)在(1)的條件下,求證:f(x)>0;
(3)求證:lnx<x;
(4)a>1時(shí),求函數(shù)f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)={5|x1|1x0x2+4x+4x0,則關(guān)于x的方程f2(x)-5(f(x)+4=0的實(shí)數(shù)根的個(gè)數(shù)為( �。�
A.2B.3C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.等差數(shù)列{an}滿足a5=14,a7=20,數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2-2Sn
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)證明:數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x3-3x2-9x+2在[-2,2]最大值是( �。�
A.-25B.7C.0D.-20

查看答案和解析>>

同步練習(xí)冊(cè)答案