20.設a,b,c為實數(shù),“ac=b2”是“a,b,c成等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 先證明必要性,由a、b、c成等比數(shù)列,根據(jù)等比數(shù)列的性質可得b2=ac;再證充分性,可以舉一個反例,滿足b2=ac,但a、b、c不成等比數(shù)列,從而得到正確的選項.

解答 解:若a、b、c成等比數(shù)列,
根據(jù)等比數(shù)列的性質可得:b2=ac;
若b=0,a=2,c=0,滿足b2=ac,但a、b、c顯然不成等比數(shù)列,
則“b2=ac”是“a、b、c成等比數(shù)列”的必要不充分條件.
故選:B.

點評 本題主要考查等比數(shù)列的等比中項的性質和充要條件的判斷.在應用a,b,c成等比數(shù)列時,一定要考慮a,b,c都等于0的特殊情況,這是解題的關鍵所在.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=$\frac{1}{f(-2-{a}_{n})}$(n∈N*),則a2018的值為(  )
A.4033B.4034C.4035D.4036

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知Sn為數(shù)列{an}的前n項和,an>0,an2+2an=4Sn-1.
(1)求{an}的通項公式;
(2)設bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求{bn}的前n項和Tn
(3)cn=$\frac{1}{{{{({a_n}+1)}^2}}}$,{cn}的前n項和為Dn,求證:Dn<$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,在定義域內(nèi)是單調遞增函數(shù)的是( 。
A.y=|x|B.$y=\frac{1}{x}$C.y=x2D.y=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.與兩圓x2+y2+2y-4=0和x2+y2-4x-16=0都相切的直線有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.橢圓2x2+3y2=1的焦距為$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖是某校舉行歌唱比賽時,七位評委為某位選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)依次為( 。
A.87,86B.83,85C.88,85D.82,86

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=(acosx+bsinx)cosx有最大值2,最小值-1,則實數(shù)(ab)2的值為( 。
A.1B.8C.9D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知等比數(shù)列{an}的首項為1,公比為q,它的前n項和為Sn
(1)若S3=3,S6=-21,求公比q;
(2)若q>0,且Tn=a1+a3+…+a2n-1,求$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{T}_{n}}$.

查看答案和解析>>

同步練習冊答案