18.函數(shù)y=$\sqrt{x+1}$(x≥-1)的反函數(shù)為y=x2-1(x≥0).

分析 由y=$\sqrt{x+1}$解出x,互換變量x,y即可.

解答 解:∵y=$\sqrt{x+1}$(x≥-1),∴y≥0,x=y2-1,
∴y=$\sqrt{x+1}$(x≥-1)的反函數(shù)為y=x2-1,(x≥0).
故答案為y=x2-1(x≥0).

點評 本題考查了反函數(shù)解析式求解,注意自變量的取值是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.f(x)=$\frac{x}{1-\sqrt{1-x}}$的定義域是(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=x2+bx+c(b、c∈R).
(Ⅰ)若f(x)在[-2,2]上單調(diào),求b的取值范圍;
(Ⅱ)若f(x)≥|x|對一切x∈R恒成立,求證:b2+1≤4c;
(Ⅲ)若對一切滿足|x|≥2的實數(shù)x,都有f(x)≥0,且$f(\frac{{2{x^2}+3}}{{{x^2}+1}})$的最大值為1,求證:b、c滿足的條件是3b+c+8=0且-5≤b≤-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
(1)求函數(shù)y=cosx的值域;
(2)求函數(shù)y=-3(1-cos2x)-4cosx+4的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{x+1}$+lg(2-x)的定義域為A,g(x)=-x2+1的值域為B.設(shè)全集U=R.
(1)求集合A,B;
(2)求A∩(∁UB).
(3)已知C={x|a≤x≤a+2},若B∩C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線l1;x+ay+2=0和直線l2:(a-2)x+3y+6a=0,則“a=3”是“l(fā)1∥l2”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f (x)是定義在實數(shù)集R上不恒為零的偶函數(shù),且f (-1)=0,若對任意的實數(shù)x都有xf (x+1)=(1+x) f (x)成立,則$\sum_{k-0}^{2010}f(\frac{k}{2})$ 的值是( 。
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知y=x2+4ax-2在區(qū)間(-∞,4]上為減函數(shù),則a的取值范圍是(  )
A.(-∞,-2]B.(-∞,2]C.[-2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,自點M(1,0)引直線交橢圓$\frac{{x}^{2}}{4}$+y2=1于A,B兩點,直線l:x=4與x軸交于點N,設(shè)點A關(guān)于x軸的對稱點為P(異于點B).
(1)求證:P、B、N三點共線;
(2)過點A作PB的平行線交直線l:x=4于點Q,記△AQM、△QMN、△BMN的面積分別為S1、S2、S3,是否存在常數(shù)λ,使得S22=λS1S3?若存在,請求出λ的值:若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案