8.f(x)=$\frac{x}{1-\sqrt{1-x}}$的定義域是(-∞,0)∪(0,1].

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0,聯(lián)立不等式組得答案.

解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{1-x≥0}\\{1-x≠1}\end{array}\right.$,
解得:x≤1且x≠0.
∴函數(shù)f(x)的定義域為:(-∞,0)∪(0,1].
故答案為:(-∞,0)∪(0,1].

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的方程為x2+ay2=1(a∈R).
(1)當a=-$\frac{1}{3}$時,是否存在以M(1,1)為中點的弦,若存在,求出弦所在直線的方程;若不得在,請說明理由;
(2)討論曲線C所表示的軌跡形狀;
(3)若a≠-1時,直線y=x-1與曲線C相交于兩點M,N,且|MN|=$\sqrt{2}$,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是一個正方體的展開圖,在原正方體中直線AB與CD的位置關(guān)系是異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,則向量$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的射影為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)(x∈R)
(1)求f(x)的最小正周期、單調(diào)增區(qū)間、對稱軸和對稱中心;
(2)該函數(shù)圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),0<α<β<π.
(Ⅰ)若|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{2}$,求證$\overrightarrow a$⊥$\overrightarrow b$;
(Ⅱ)設(shè)$\overrightarrow c$=(0,1),若$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x|.
(1)解關(guān)于x的不等式f(x-1)<a,a∈R
(2)解不等式f(x+1)+f(2x)≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.集合A={y|y=-x2-3},B={y|y=x2+2x-4},則A∩B=[-5,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=$\sqrt{x+1}$(x≥-1)的反函數(shù)為y=x2-1(x≥0).

查看答案和解析>>

同步練習(xí)冊答案