【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

【答案】12)理論上至少要進(jìn)行輪游戲.

【解析】

(1)分①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次三種情況進(jìn)行求和即可.

(2)(1),分別計(jì)算三種情況的概率化簡(jiǎn)求和,再代入可知,再設(shè),根據(jù)二次函數(shù)在區(qū)間上的最值方法求解可得當(dāng)時(shí),.再根據(jù)他們小組在輪游戲中獲優(yōu)秀小組次數(shù)滿足,利用二項(xiàng)分布的方法求解即可.

解:(1)由題可知,所以可能的情況有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次.

故所求概率

2)他們?cè)谝惠営螒蛑蝎@優(yōu)秀小組的概率為

因?yàn)?/span>,所以

因?yàn)?/span>,,,所以,,又

所以,令,以,則

當(dāng)時(shí),,他們小組在輪游戲中獲優(yōu)秀小組次數(shù)滿足

,則,所以理論上至少要進(jìn)行輪游戲.此時(shí),,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下數(shù)表構(gòu)造思路源于我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中的“楊輝三角形”.

該表由若干行數(shù)字組成,從第二行起,第一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后行僅有一個(gè)數(shù),則這個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國(guó)家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號(hào)召,某貧困縣在精準(zhǔn)推進(jìn)上下功夫,在精準(zhǔn)扶貧上見實(shí)效.根據(jù)當(dāng)?shù)貧夂蛱攸c(diǎn)大力發(fā)展中醫(yī)藥產(chǎn)業(yè),藥用昆蟲的使用相應(yīng)愈來愈多,每年春暖以后到寒冬前,昆蟲大量活動(dòng)與繁殖,易于采取各種藥用昆蟲.已知一只藥用昆蟲的產(chǎn)卵數(shù)y(單位:個(gè))與一定范圍內(nèi)的溫度x(單位:℃)有關(guān),于是科研人員在3月份的31天中隨機(jī)選取了5天進(jìn)行研究,現(xiàn)收集了該種藥物昆蟲的5組觀察數(shù)據(jù)如表:

日期

2

7

15

22

30

溫度/℃

10

11

13

12

8

產(chǎn)卵數(shù)y/個(gè)

22

24

29

25

16

1)從這5天中任選2天,記這2天藥用昆蟲的產(chǎn)卵數(shù)分別為m,n,求“事件mn均不小于24”的概率?

2)科研人員確定的研究方案是:先從這5組數(shù)據(jù)中任選2組,用剩下的3組數(shù)據(jù)建立線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

①若選取的是32日與330日這2組數(shù)據(jù),請(qǐng)根據(jù)37日、15日和22日這三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程?

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對(duì)值均不超過2個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?

附公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,已知分別是的中點(diǎn),將沿折起,使的位置如圖所示,且,連接,

1)求證:平面平面

2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在定義域內(nèi)的某個(gè)區(qū)間上是增函數(shù),且上也是增函數(shù),則稱上的完美增函數(shù)”.已知,.

1)判斷函數(shù)是否為區(qū)間上的“完美增函數(shù)”;

2)若函數(shù)是區(qū)間上的“完美增函數(shù)”,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

2)已知直線與曲線交于,兩點(diǎn),直線與曲線C交于,兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:

(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表);

(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差。

(i)若某用戶從該企業(yè)購(gòu)買了10件這種產(chǎn)品,記表示這10件產(chǎn)品中質(zhì)量指標(biāo)值位于(187.4,225.2)的產(chǎn)品件數(shù),求;

(ii)一天內(nèi)抽取的產(chǎn)品中,若出現(xiàn)了質(zhì)量指標(biāo)值在之外的產(chǎn)品,就認(rèn)為這一天的生產(chǎn)過程中可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查下。下面的莖葉圖是檢驗(yàn)員在一天內(nèi)抽取的15個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,根據(jù)近似值判斷是否需要對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查。

附:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷,已知體育迷中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別

有關(guān)?


非體育迷

體育迷

合計(jì)









合計(jì)




(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為超級(jí)體育迷,已知超級(jí)體育迷中有2名女性,若從超級(jí)體育迷中任意選取2人,求至少有1名女性觀眾的概率.


0.05

0.01

k

3.841

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案