已知點,,則在≤0表示的平面區(qū)域內(nèi)的點是              (    )

    A.,  B.,  C.,  D.,

 

【答案】

 D  解析:將四個點的坐標分別代入不等式組≤0,滿足條件的是(-1,0)和(1,1),選D.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于下列四個命題
①若向量
a
,
b
,滿足
a
b
<0
,則
a
b
的夾角為鈍角;
②已知集合A=正四棱柱,B=長方體,則A∩B=B;
③在直角坐標平面內(nèi),點M(|a|,|a-3|)與N(cosα,sinα)在直線x+y-2=0的異側(cè);
④對2×2數(shù)表定義平方運算如下:
ab
cd
)2=
ab
cd
ab
cd
=
a2+bcab+bd
ac+cdbc+d2
,則
10
-11
)2
=
10
-21

其中真命題是
 
(將你認為的正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄于下表中:
   C1  C2
 x  2  
2
 4  3
 y  0  
2
2
 4 -2
3
則C1、C2的標準方程分別為
 
、
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標平面上的對應點為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(非端點),則Pz在圓C上、寫出線段s的表達式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應關系,通過這種對應關系的研究,填寫表(表中s1是(1)中圓C1的對應線段).
    線段s與線段s1的關系 m、r的取值或表達式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調(diào)性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增!最大值為

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省莆田一中高二(下)第一學段考試數(shù)學試卷(選修2-1、2-2)(解析版) 題型:填空題

已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄于下表中:
  C1 C2
 x 2  4 3
 y 0  4-2
則C1、C2的標準方程分別為    、   

查看答案和解析>>

同步練習冊答案