分析 由將等式兩邊同除以n,即可得到$\underset{lim}{n→∞}$(5-$\sqrt{\frac{a{n}^{2}-bn+c}{{n}^{2}}}$)=0,由極限的運(yùn)算求得a的值,將a代入,分子有理化,分子分母同除以n,即可求得b的值.
解答 解:$\underset{lim}{n→∞}$(5n-$\sqrt{an^2-bn+c}$)=2,
$\underset{lim}{n→∞}$$\frac{5n-\sqrt{a{n}^{2}-bn+c}}{n}$=$\underset{lim}{n→∞}$$\frac{2}{n}$=0,
∴$\underset{lim}{n→∞}$(5-$\sqrt{\frac{a{n}^{2}-bn+c}{{n}^{2}}}$)=0,
∴$\underset{lim}{n→∞}$(5-$\sqrt{a}$)=0,
∴a=25,
$\underset{lim}{n→∞}$(5n-$\sqrt{an^2-bn+c}$)=$\frac{25{n}^{2}-(25{n}^{2}+bn+c)}{5n+\sqrt{25{n}^{2}+bn+c}}$,
=$\underset{lim}{n→∞}$$\frac{-bn-c}{5n+\sqrt{25{n}^{2}+bn+c}}$,
=$\underset{lim}{n→∞}$$\frac{-b-\frac{c}{n}}{5+\sqrt{25+\frac{n}+\frac{c}{{n}^{2}}}}$,
=$\underset{lim}{n→∞}$$\frac{-b}{10}$=2,
∴b=-20
故a=25,b=-20.
點(diǎn)評 本題考查極限的運(yùn)算,考查常見求極限運(yùn)算的方法,考查分析問題及解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩個(gè)圓 | B. | 一條直線和一條射線 | ||
C. | 兩條直線 | D. | 一個(gè)圓和一條射線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,+∞) | D. | (0,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com