分析 (1)按照x≤-1,-1<x≤2,x>2三種情況進行討論,去掉絕對值符號可解不等式,注意三種情況要對x的范圍取并集;
(Ⅱ)f(x)≥3即|x-2|+2|x-a|≥3,求出f(x)的最小值是a+2,得到a+2≥3,解出即可.
解答 解:(1)當(dāng)a=1時,f(x)=|x-2|+2|x+1|,
①當(dāng)x≤-1時,f(x)=2-x-2(x+1)=-3x,
由f(x)>8,得-3x>8,解得x<-$\frac{8}{3}$;
②-1<x≤2時,f(x)=2-x+2(x+1)=x+4,
由f(x)>8,得x>4,
∴此時不等式無解;
③當(dāng)x>2時,f(x)=x-2+2(x+1)=3x,
由f(x)>8,得3x>8,解得x>$\frac{8}{3}$;
綜上,不等式f(x)>3的解集為(-∞,-$\frac{8}{3}$)∪($\frac{8}{3}$,+∞).
(2)∵a>0,∴-a<0<2,
f(x)=|x-2|+2|x+a|=$\left\{\begin{array}{l}{-3x+2-2a,x≤-a}\\{x+2a+2,-a<x<2}\\{3x-2+2a,x≥2}\end{array}\right.$,
∴f(x)min=f(-a)=a+2,
f(x)≥3即a+2≥3,解得:a≥1.
點評 對于含有絕對值的題目,本身就是分類的,問題的提出已包含了分類的原因.分類討論是一種邏輯方法,是一種重要的數(shù)學(xué)思想,同時也是一種重要的解題策略,它體現(xiàn)了化整為零、積零為整的思想與歸類整理的方法,在高考試題中占有重要的位置.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com